A whistler is a very low frequency (VLF) electromagnetic (radio) wave generated by lightning. Frequencies of terrestrial whistlers are 1 kHz to 30 kHz, with maximum frequencies usually at 3 kHz to 5 kHz. Although they are electromagnetic waves, they occur at audio frequencies, and can be converted to audio using a suitable receiver. They are produced by lightning strikes (mostly intracloud and return-path) where the impulse travels along the Earth's magnetic field lines from one hemisphere to the other. They undergo dispersion of several kHz due to the slower velocity of the lower frequencies through the plasma environments of the ionosphere and magnetosphere. Thus they are perceived as a descending tone which can last for a few seconds. The study of whistlers categorizes them into Pure Note, Diffuse, 2-Hop, and Echo Train types.
Voyager 1 and 2 spacecraft detected whistler-like activity in the vicinity of Jupiter known as "Jovian Whistlers", supporting the visual observations of lightning made by Voyager 1.
Whistlers have been detected in the Earth's magnetosheath, where they are often called “lion roars” due to their frequencies of tens to hundreds of Hz.
The pulse of electromagnetic energy of a lightning discharge producing whistlers contains a wide range of frequencies below the electron cyclotron frequency. Due to interactions with free electrons in the ionosphere, the waves becomes highly dispersive and like guided waves, follow the lines of geomagnetic field. These lines provide the field with sufficient focusing influence and prevents the scattering of field energy. Their paths reach into the outer space as far as 3 to 4 times the Earth's radius in the plane of equator and bring energy from lightning discharge to the Earth at a point in the opposite hemisphere which is the magnetic conjugate of the position of radio emission for whistlers. From there, the whistler waves are reflected back to the hemisphere from which they started. The energy is almost perfectly reflected from earth surface 4 or 5 times with increase dispersion and diminishing amplitude.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A radio atmospheric signal or sferic (sometimes also spelled "spheric") is a broadband electromagnetic impulse that occurs as a result of natural atmospheric lightning discharges. Sferics may propagate from their lightning source without major attenuation in the Earth–ionosphere waveguide, and can be received thousands of kilometres from their source. On a time-domain plot, a sferic may appear as a single high-amplitude spike in the time-domain data.
Geophysics (ˌdʒiːoʊˈfɪzɪks) is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. Geophysicists, who usually study geophysics, physics, or one of the earth sciences at the graduate level, complete investigations across a wide range of scientific disciplines.
Very low frequency or VLF is the ITU designation for radio frequencies (RF) in the range of 3–30 kHz, corresponding to wavelengths from 100 to 10 km, respectively. The band is also known as the myriameter band or myriameter wave as the wavelengths range from one to ten myriameters (an obsolete metric unit equal to 10 kilometers). Due to its limited bandwidth, audio (voice) transmission is highly impractical in this band, and therefore only low data rate coded signals are used.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Lightning strikes can seriously affect the reliability and availability of electrical infrastructures. The computation of lightning-electromagnetic fields represents one of the most crucial steps in the evaluation of the induced effects; thus, having at di ...
Lightning discharges, including cloud-to-ground (CG) and intracloud (IC) lightning, are known to emit electromagnetic pulses (EMPs) in a wide frequency band ranging from few Hz up to hundreds MHz [1]. During the breakdown and ionization processes (mostly f ...
We have seen in this chapter that the FDTD method for solving Maxwell's equations is accurate and versatile in a very wide variety of applications related to lightning. One can analyze the lightning electromagnetic field propagation over distances ranging ...