Summary
The Zeeman effect (ˈzeɪmən; ˈzeːmɑn) is the effect of splitting of a spectral line into several components in the presence of a static magnetic field. It is named after the Dutch physicist Pieter Zeeman, who discovered it in 1896 and received a Nobel prize for this discovery. It is analogous to the Stark effect, the splitting of a spectral line into several components in the presence of an electric field. Also similar to the Stark effect, transitions between different components have, in general, different intensities, with some being entirely forbidden (in the dipole approximation), as governed by the selection rules. Since the distance between the Zeeman sub-levels is a function of magnetic field strength, this effect can be used to measure magnetic field strength, e.g. that of the Sun and other stars or in laboratory plasmas. The Zeeman effect is very important in applications such as nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, magnetic resonance imaging (MRI) and Mössbauer spectroscopy. It may also be utilized to improve accuracy in atomic absorption spectroscopy. A theory about the magnetic sense of birds assumes that a protein in the retina is changed due to the Zeeman effect. When the spectral lines are absorption lines, the effect is called inverse Zeeman effect. Historically, one distinguishes between the normal and an anomalous Zeeman effect (discovered by Thomas Preston in Dublin, Ireland). The anomalous effect appears on transitions where the net spin of the electrons is non-zero. It was called "anomalous" because the electron spin had not yet been discovered, and so there was no good explanation for it at the time that Zeeman observed the effect. Wolfgang Pauli recalled that when asked by a colleague as to why he looked unhappy, he replied, "How can one look happy when he is thinking about the anomalous Zeeman effect?" At higher magnetic field strength the effect ceases to be linear. At even higher field strengths, comparable to the strength of the atom's internal field, the electron coupling is disturbed and the spectral lines rearrange.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.