Publication

Investigation of Electro-Nuclear Spin States in LiHoF4 Using Cavity-Magnon-Polariton Technique

Yikai Yang
2023
Thèse EPFL
Résumé

LiReF4_4 ("Re" stands for the rare-earth element) and their doped derivatives have long been recognized as a family of compounds that exhibit rich phenomena in quantum magnetism, drawing wide attention to them from both fundamental researchers and industrial application designers. In particular, LiHoF4_4 is considered one of the best real-world realizations of the 3D dipolar Ising model, which is of tremendous importance in facilitating our understanding of quantum phase transition, critical behaviors, and magnetism in general. However, despite of decades of study, LiHoF4_4 is yet to be fully described and a thorough understanding of it is hindered by complications arising from its dominant long range interaction, many-body effect, and diverse inter-particle interactions. One particular example is the strong hyperfine interaction present in LiHoF4_4 that has a plethora of physical consequences with unclear mechanisms in addition to the further split of electronic spin states. Partly due to the fact of that these finer electro-nuclear states lie above the operating frequency of conventional NMR, and below the energy resolution of most neutron scattering instrument, scarce reports exist on the investigation of the hyperfine splitting of electronic states in LiHoF4_4. In the present text, we take advantage of a high-finesse re-entrant cavity resonator to resolve these electro-nuclear spin states. In addition, by deriving an adequate theoretical description of the cavity-spin hybrid system under existing frameworks, we also make an attempt to understand their effects on some of the magnetic properties of LiHoF4_4.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Structure hyperfine
vignette|Représentation schématique des niveaux fins et hyperfins de l’hydrogène. La structure hyperfine d’un niveau d’énergie dans un atome consiste en une séparation de ce niveau en états d’énergie très proches. Il s’observe essentiellement par une raie spectrale dans le domaine radio ou micro-onde, comme la raie à 21 centimètres de l’hydrogène atomique. La structure hyperfine s’explique en physique quantique comme une interaction entre deux dipôles magnétiques : Le dipôle magnétique nucléaire résultant du spin nucléaire ; Le dipôle magnétique électronique lié au moment cinétique orbital et au spin de l’électron.
Magnétisme
Le magnétisme représente un ensemble de phénomènes physiques dans lesquels les objets exercent des forces attractives ou répulsives sur d'autres matériaux. Les courants électriques et les moments magnétiques des particules élémentaires fondamentales sont à l’origine du champ magnétique qui engendre ces forces. Tous les matériaux sont influencés, de manière plus ou moins complexe, par la présence d'un champ magnétique, et l’état magnétique d'un matériau dépend de sa température (et d'autres variables telles que la pression et le champ magnétique extérieur) de sorte qu'un matériau peut présenter différentes formes de magnétisme selon sa température.
Résonance paramagnétique électronique
vignette|redresse=1.25|Spectromètre à résonance paramagnétique électronique La résonance paramagnétique électronique (RPE), résonance de spin électronique (RSE), ou en anglais electron spin resonance (ESR) désigne la propriété de certains électrons à absorber, puis réémettre l'énergie d'un rayonnement électromagnétique lorsqu'ils sont placés dans un champ magnétique. Seuls les électrons non appariés (ou électrons célibataires), présents dans des espèces chimiques radicalaires ainsi que dans les sels et complexes des métaux de transition, présentent cette propriété.
Afficher plus
Publications associées (55)

Magnetism of Single Surface Adsorbed Atoms Studied with Radio-Frequency STM

Clément Marie Soulard

This thesis investigates the magnetic properties of single atoms and molecules adsorbed on thin magnesium oxide decoupling layers, grown on a silver single crystal. To address these systems experimentally, we use a low temperature scanning tunneling micros ...
EPFL2024

Structure, Spin Correlations, and Magnetism of the S=1/2 Square-Lattice Antiferromagnet Sr2CuTe1-xWxO6 (0 ≤ x ≤ 1)

Henrik Moodysson Rønnow, Ellen Fogh, Peter Babkevich, Sami Juhani Vasala

Quantum spin liquids are highly entangled magnetic states with exotic properties. The S = 1/2 square-lattice Heisenberg model is one of the foundational models in frustrated magnetism with a predicted, but never observed, quantum spin liquid state. Isostru ...
Washington2023

Investigating field-induced magnetic order in Han purple by neutron scattering up to 25.9 T

Frédéric Mila, Bruce Normand, Philippe Heller, Nicolas Laflorencie

BaCuSi2O6 is a quasi-two-dimensional (2D) quantum antiferromagnet containing three different types of stacked, square-lattice bilayer hosting spin-1/2 dimers. Although this compound has been studied extensively over the last two decades, the critical appli ...
AMER PHYSICAL SOC2022
Afficher plus
MOOCs associés (25)
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.