Summary
The equirectangular projection (also called the equidistant cylindrical projection or la carte parallélogrammatique projection), and which includes the special case of the plate carrée projection (also called the geographic projection, lat/lon projection, or plane chart), is a simple map projection attributed to Marinus of Tyre, who Ptolemy claims invented the projection about AD 100. The projection maps meridians to vertical straight lines of constant spacing (for meridional intervals of constant spacing), and circles of latitude to horizontal straight lines of constant spacing (for constant intervals of parallels). The projection is neither equal area nor conformal. Because of the distortions introduced by this projection, it has little use in navigation or cadastral mapping and finds its main use in thematic mapping. In particular, the plate carrée has become a standard for global raster datasets, such as Celestia, NASA World Wind, the USGS Astrogeology Research Program, and Natural Earth, because of the particularly simple relationship between the position of an image pixel on the map and its corresponding geographic location on Earth or other spherical solar system bodies. In addition it is frequently used in panoramic photography to represent a spherical panoramic image. The forward projection transforms spherical coordinates into planar coordinates. The reverse projection transforms from the plane back onto the sphere. The formulae presume a spherical model and use these definitions: is the longitude of the location to project; is the latitude of the location to project; are the standard parallels (north and south of the equator) where the scale of the projection is true; is the central parallel of the map; is the central meridian of the map; is the horizontal coordinate of the projected location on the map; is the vertical coordinate of the projected location on the map; is the radius of the globe. Longitude and latitude variables are defined here in terms of radians.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (134)
Serre model structure on Top
Explores the Serre model structure on Top, focusing on right and left homotopy.
Physics 1: Harmonic Oscillator and Spherical Coordinates
Explores harmonic oscillators, pendulum movement, and spherical coordinates in physics.
Elastic Collisions: Point Masses
Explores elastic and inelastic collisions between point masses, emphasizing momentum and kinetic energy conservation.
Show more