Bruno de Finetti (13 June 1906 – 20 July 1985) was an Italian probabilist statistician and actuary, noted for the "operational subjective" conception of probability. The classic exposition of his distinctive theory is the 1937 "La prévision: ses lois logiques, ses sources subjectives," which discussed probability founded on the coherence of betting odds and the consequences of exchangeability.
De Finetti was born in Innsbruck, Austria, and studied mathematics at Politecnico di Milano. He graduated in 1927 writing his thesis under the supervision of Giulio Vivanti. After graduation, he worked as an actuary and a statistician at Istituto Nazionale di Statistica (National Institute of Statistics) in Rome and, from 1931, the Trieste insurance company Assicurazioni Generali. In 1936 he won a competition for Chair of Financial Mathematics and Statistics, but was not nominated due to a fascist law barring access to unmarried candidates; he was appointed as ordinary professor at the University of Trieste only in 1950.
He published extensively (17 papers in 1930 alone, according to Lindley) and acquired an international reputation in the small world of probability mathematicians. He taught mathematical analysis in Padua and then won a chair in Financial Mathematics at Trieste University (1939). In 1954 he moved to the Sapienza University of Rome, first to another chair in Financial Mathematics and then, from 1961 to 1976, one in the Calculus of Probabilities. De Finetti developed his ideas on subjective probability in the 1920s independently of Frank P. Ramsey. Still, according to the preface of his Theory of Probability, he drew on ideas of Harold Jeffreys, I. J. Good and B.O. Koopman. He also reasoned about the connection of economics and probability, and thought that guiding principles to be Paretian optimum further inspired by "fairness" criteria. De Finetti held different social and political beliefs through his life: following fascism during his youth, then moving to Christian socialism and finally adhering to the Radical Party.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Decision theory (or the theory of choice; not to be confused with choice theory) is a branch of applied probability theory and analytic philosophy concerned with the theory of making decisions based on assigning probabilities to various factors and assigning numerical consequences to the outcome. There are three branches of decision theory: Normative decision theory: Concerned with the identification of optimal decisions, where optimality is often determined by considering an ideal decision-maker who is able to calculate with perfect accuracy and is in some sense fully rational.
In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) has already occurred. This particular method relies on event B occurring with some sort of relationship with another event A. In this event, the event B can be analyzed by a conditional probability with respect to A. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(AB) or occasionally P_B(A).
Bayesian probability (ˈbeɪziən or ˈbeɪʒən ) is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation representing a state of knowledge or as quantification of a personal belief. The Bayesian interpretation of probability can be seen as an extension of propositional logic that enables reasoning with hypotheses; that is, with propositions whose truth or falsity is unknown.
East Coast Fever (ECF) is a major livestock disease caused by Theileria parva Theiler, 1904, an emo-parasite protozoan transmitted by the tick Rhipicephalus appendiculatus Neumann, 1901. This disease provokes high mortality in cattle populations of East an ...
Wasserstein distances are metrics on probability distributions inspired by the problem of optimal mass transportation. Roughly speaking, they measure the minimal effort required to reconfigure the probability mass of one distribution in order to recover th ...
In a context of rapid global change, one of the key components for the survival of species is their genetic adaptive potential. Many methods have been developed to identify adaptive genetic variants, but few tools were made available to integrate this know ...