Concept

Frostman lemma

In mathematics, and more specifically, in the theory of fractal dimensions, Frostman's lemma provides a convenient tool for estimating the Hausdorff dimension of sets. Lemma: Let A be a Borel subset of Rn, and let s > 0. Then the following are equivalent: Hs(A) > 0, where Hs denotes the s-dimensional Hausdorff measure. There is an (unsigned) Borel measure μ on Rn satisfying μ(A) > 0, and such that holds for all x ∈ Rn and r>0. Otto Frostman proved this lemma for closed sets A as part of his PhD dissertation at Lund University in 1935. The generalization to Borel sets is more involved, and requires the theory of Suslin sets. A useful corollary of Frostman's lemma requires the notions of the s-capacity of a Borel set A ⊂ Rn, which is defined by (Here, we take inf ∅ = ∞ and = 0. As before, the measure is unsigned.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.