Concept

Frostman lemma

In mathematics, and more specifically, in the theory of fractal dimensions, Frostman's lemma provides a convenient tool for estimating the Hausdorff dimension of sets. Lemma: Let A be a Borel subset of Rn, and let s > 0. Then the following are equivalent: Hs(A) > 0, where Hs denotes the s-dimensional Hausdorff measure. There is an (unsigned) Borel measure μ on Rn satisfying μ(A) > 0, and such that holds for all x ∈ Rn and r>0. Otto Frostman proved this lemma for closed sets A as part of his PhD dissertation at Lund University in 1935. The generalization to Borel sets is more involved, and requires the theory of Suslin sets. A useful corollary of Frostman's lemma requires the notions of the s-capacity of a Borel set A ⊂ Rn, which is defined by (Here, we take inf ∅ = ∞ and = 0. As before, the measure is unsigned.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.