Sedimentology encompasses the study of modern sediments such as sand, silt, and clay, and the processes that result in their formation (erosion and weathering), transport, deposition and diagenesis. Sedimentologists apply their understanding of modern processes to interpret geologic history through observations of sedimentary rocks and sedimentary structures.
Sedimentary rocks cover up to 75% of the Earth's surface, record much of the Earth's history, and harbor the fossil record. Sedimentology is closely linked to stratigraphy, the study of the physical and temporal relationships between rock layers or strata.
The premise that the processes affecting the earth today are the same as in the past is the basis for determining how sedimentary features in the rock record were formed. By comparing similar features today to features in the rock record—for example, by comparing modern sand dunes to dunes preserved in ancient aeolian sandstones—geologists reconstruct past environments.
There are four primary types of sedimentary rocks: clastics, carbonates, evaporites, and chemical.
Clastic rocks are composed of particles derived from the weathering and erosion of precursor rocks and consist primarily of fragmental material. Clastic rocks are classified according to their predominant grain size and their composition. In the past, the term "Clastic Sedimentary Rocks" were used to describe silica-rich clastic sedimentary rocks, however there have been cases of clastic carbonate rocks. The more appropriate term is siliciclastic sedimentary rocks.
Organic sedimentary rocks are important deposits formed from the accumulation of biological detritus, and form coal and oil shale deposits, and are typically found within basins of clastic sedimentary rocks
Carbonates are composed of various carbonate minerals (most often calcium carbonate (CaCO3)) precipitated by a variety of organic and inorganic processes. Typically, the majority of carbonate rocks are composed of reef material .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Sediment transport is the movement of solid particles (sediment), typically due to a combination of gravity acting on the sediment, and the movement of the fluid in which the sediment is entrained. Sediment transport occurs in natural systems where the particles are clastic rocks (sand, gravel, boulders, etc.), mud, or clay; the fluid is air, water, or ice; and the force of gravity acts to move the particles along the sloping surface on which they are resting.
A geologist is a scientist who studies the solid, liquid, and gaseous matter that constitutes Earth and other terrestrial planets, as well as the processes that shape them. Geologists usually study geology, earth science, or geophysics, although backgrounds in physics, chemistry, biology, and other sciences are also useful. Field research (field work) is an important component of geology, although many subdisciplines incorporate laboratory and digitalized work. Geologists can be classified in a larger group of scientists, called geoscientists.
In the geosciences, paleosol (palaeosol in Great Britain and Australia) is an ancient soil that formed in the past. The precise definition of the term in geology and paleontology is slightly different from its use in soil science. In geology and paleontology, a paleosol is a former soil preserved by burial underneath either sediments (alluvium or loess) or volcanic deposits (volcanic ash), which in the case of older deposits have lithified into rock.
Focus is on lakes, rivers and reservoirs as aquatic systems. Specific is the quantitative analyse (incl. exercises) of physical, biogeochemical and sedimentological processes / interactions. The goal
Les ingénieurs civils exercent leurs activités en constante interaction avec le sous-sol.
Le cours de géologie donne aux étudiants les bases en Géosciences nécessaires à une ingénierie bien intégrée d
Impaired sediment transport can have numerous adverse impacts on the eco-morphodynamics of the riverscape. If well designed, sediment augmentation measures present a promising mitigation approach at different scales. This chapter focuses on flume experim ...
2023
Riparian vegetation, which is commonly found in natural rivers and open channels, has a strong influence on flow structures. This paper describes a laboratory experiment on velocity distributions, secondary currents, and coherent structures in narrow open- ...
ELSEVIER SCI LTD2023
, , ,
One of the most alarming recent findings in geo-science is the dramatic rise in the rate of humaninduced earthquakes in the past decade. This is due to the fluid injection or extraction in deep reservoirs for hydrocarbon production, wastewater and CO2 stor ...