Summary
The Hong–Ou–Mandel effect is a two-photon interference effect in quantum optics that was demonstrated in 1987 by three physicists from the University of Rochester: Chung Ki Hong (홍정기), Zheyu Ou (区泽宇), and Leonard Mandel. The effect occurs when two identical single-photons enter a 1:1 beam splitter, one in each input port. When the temporal overlap of the photons on the beam splitter is perfect, the two photons will always exit the beam splitter together in the same output mode, meaning that there is zero chance that they will exit separately with one photon in each of the two outputs giving a coincidence event. The photons have a 50:50 chance of exiting (together) in either output mode. If they become more distinguishable (e.g. because they arrive at different times or with different wavelength), the probability of them each going to a different detector will increase. In this way, the interferometer coincidence signal can accurately measure bandwidth, path lengths, and timing. Since this effect relies on the existence of photons and the second quantization it can not be fully explained by classical optics. The effect provides one of the underlying physical mechanisms for logic gates in linear optical quantum computing (the other mechanism being the action of measurement). When a photon enters a beam splitter, there are two possibilities: it will either be reflected or transmitted. The relative probabilities of transmission and reflection are determined by the reflectivity of the beam splitter. Here, we assume a 1:1 beam splitter, in which a photon has equal probability of being reflected and transmitted. Next, consider two photons, one in each input mode of a 1:1 beam splitter. There are four possibilities regarding how the photons will behave: The photon coming in from above is reflected and the photon coming in from below is transmitted. Both photons are transmitted. Both photons are reflected. The photon coming in from above is transmitted and the photon coming in from below is reflected.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (3)