Concept

Orotic acid

Summary
Orotic acid (ɔːˈrɒtɪk) is a pyrimidinedione and a carboxylic acid. Historically, it was believed to be part of the vitamin B complex and was called vitamin B13, but it is now known that it is not a vitamin. The compound is synthesized in the body via a mitochondrial enzyme, dihydroorotate dehydrogenase or a cytoplasmic enzyme of pyrimidine synthesis pathway. It is sometimes used as a mineral carrier in some dietary supplements (to increase their bioavailability), most commonly for lithium orotate. Dihydroorotate is synthesized to orotic acid by the enzyme dihydroorotate dehydrogenase, where it later combines with phosphoribosyl pyrophosphate (PRPP) to form orotidine-5'-monophosphate (OMP). A distinguishing characteristic of pyrimidine synthesis is that the pyrimidine ring is fully synthesized before being attached to the ribose sugar, whereas purine synthesis happens by building the base directly on the sugar. Orotic acid is a Bronsted acid and its conjugate base, the orotate anion, is able bind to metals. Lithium orotate, for example, has been investigated for use in treating alcoholism, and complexes of cobalt, manganese, nickel, and zinc are known. The pentahydrate nickel orotate coordination complex converts into a polymeric trihydrate upon heating in water at 100 °C. Crystals of the trihydrate can be obtained by hydrothermal treatment of nickel(II) acetate and orotic acid, when the reactions are run with bidentate nitrogen ligands such as 2,2'-bipyridine present other solids can be obtained. The spelling of orotic acid is one letter away from erotic acid. This close mis-spelling is an example of a chemical with a funny name. A buildup of orotic acid can lead to orotic aciduria and acidemia. It may be a symptom of an increased ammonia load due to a metabolic disorder, such as a urea cycle disorder. In ornithine transcarbamylase deficiency, an X-linked inherited and the most common urea cycle disorder, excess carbamoyl phosphate is converted into orotic acid.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.