Universal Plug and Play (UPnP) is a set of networking protocols that permits networked devices, such as personal computers, printers, Internet gateways, Wi-Fi access points and mobile devices to seamlessly discover each other's presence on the network and establish functional network services. UPnP is intended primarily for residential networks without enterprise-class devices.
The UPnP protocols were promoted by the UPnP Forum, a computer industry initiative to enable simple and robust connectivity to standalone devices and personal computers from many different vendors. The Forum consisted of more than 800 vendors involved in everything from consumer electronics to network computing. Since 2016, all UPnP efforts have been managed by the Open Connectivity Foundation (OCF).
UPnP assumes the network runs Internet Protocol (IP) and then leverages HTTP, on top of IP, in order to provide device/service description, actions, data transfer and event notification. Device search requests and advertisements are supported by running HTTP on top of UDP (port 1900) using multicast (known as HTTPMU). Responses to search requests are also sent over UDP, but are instead sent using unicast (known as HTTPU).
Conceptually, UPnP extends plug and play—a technology for dynamically attaching devices directly to a computer—to zero-configuration networking for residential and SOHO wireless networks. UPnP devices are plug and play in that, when connected to a network, they automatically establish working configurations with other devices.
UPnP is generally regarded as unsuitable for deployment in business settings for reasons of economy, complexity, and consistency: the multicast foundation makes it chatty, consuming too many network resources on networks with a large population of devices; the simplified access controls don't map well to complex environments; and it does not provide a uniform configuration syntax such as the CLI environments of Cisco IOS or JUNOS.
The UPnP architecture allows device-to-device networking of consumer electronics, mobile devices, personal computers, and networked home appliances.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores transient stability in power systems, covering synchronous machine synchronism after disturbances, voltage stability, and power flow calculations.
Explores speculative memory consistency, challenges, solutions, performance overhead, and the impact of dynamic fence enforcement on achieving high performance.
A digital video recorder (DVR) is an electronic device that records video in a digital format to a disk drive, USB flash drive, SD memory card, SSD or other local or networked mass storage device. The term includes set-top boxes with direct to disk recording, portable media players and TV gateways with recording capability, and digital camcorders. Personal computers are often connected to video capture devices and used as DVRs; in such cases the application software used to record video is an integral part of the DVR.
G.hn is a specification for home networking with data rates up to 2 Gbit/s and operation over four types of legacy wires: telephone wiring, coaxial cables, power lines and plastic optical fiber. A single G.hn semiconductor device is able to network over any of the supported home wire types. Some benefits of a multi-wire standard are lower equipment development costs and lower deployment costs for service providers (by allowing customer self-install). G.
Windows Media Player (WMP) is the first media player and media library application that Microsoft developed to play audio and video on personal computers. It has been a component of the Microsoft Windows operating system, including Windows 9x, Windows NT, Pocket PC, and Windows Mobile. Microsoft also released editions of Windows Media Player for classic Mac OS, Mac OS X, and Solaris, but has since discontinued them.
The paper studies the benefits of multi-path content delivery from a rate-distortion efficiency perspective. We develop an optimization framework for computing transmission schedules for streaming media packets over multiple network paths that maximize the ...
Delivering multiview video content over present packet networks poses multiple challenges. First, the best effort nature of the Internet exposes media packets to variable bandwidth, loss, and delay as they traverse the network. Second, the prediction depen ...
Dynamic Adaptive Streaming over HTTP (DASH) is referred to as a multimedia streaming standard to deliver high quality multimedia content over the Internet using conventional HTTP Web servers. As a fundamental feature, it enables automatic switching of qual ...