Hardenability is the depth to which a steel is hardened after putting it through a heat treatment process. It should not be confused with hardness, which is a measure of a sample's resistance to indentation or scratching. It is an important property for welding, since it is inversely proportional to weldability, that is, the ease of welding a material.
When a hot steel work-piece is quenched, the area in contact with the water immediately cools and its temperature equilibrates with the quenching medium. The inner depths of the material however, do not cool so rapidly, and in work-pieces that are large, the cooling rate may be slow enough to allow the austenite to transform fully into a structure other than martensite or bainite. This results in a work-piece that does not have the same crystal structure throughout its entire depth; with a softer core and harder "shell". The softer core is some combination of ferrite and cementite, such as pearlite.
The hardenability of ferrous alloys, i.e. steels, is a function of the carbon content and other alloying elements and the grain size of the austenite. The relative importance of the various alloying elements is calculated by finding the equivalent carbon content of the material.
The fluid used for quenching the material influences the cooling rate due to varying thermal conductivities and specific heats. Substances like brine and water cool the steel much more quickly than oil or air. If the fluid is agitated cooling occurs even more quickly. The geometry of the part also affects the cooling rate: of two samples of equal volume, the one with higher surface area will cool faster.
The hardenability of a ferrous alloy is measured by a Jominy test: a round metal bar of standard size (indicated in the top image) is transformed to 100% austenite through heat treatment, and is then quenched on one end with room-temperature water. The cooling rate will be highest at the end being quenched, and will decrease as distance from the end increases.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours constitue une introduction aux principes qui régissent l'élaboration, la microstructure et les propriétés des matériaux métalliques. Trois systèmes principaux d'alliages (Al, Cu, Fe) seront u
Les TPs matériaux BA4 ont pour but d'illustrer de manière pratique les notions acquises dans les cours Introduction à la Science des Matériaux et Métaux et Alliages. L'accent est mis sur le lien entre
Ce cours est une introduction au comportement mécanique, à l'élaboration, à la structure et au cycle de vie des grandes classes de matériaux de structure (métaux, polymères, céramiques et composites)
Alloy steel is steel that is alloyed with a variety of elements in total amounts between 1.0% and 50% by weight to improve its mechanical properties. Alloy steels are broken down into two groups: low alloy steels and high alloy steels. The difference between the two is disputed. Smith and Hashemi define the difference at 4.0%, while Degarmo, et al., define it at 8.0%. Most commonly, the phrase "alloy steel" refers to low-alloy steels. Strictly speaking, every steel is an alloy, but not all steels are called "alloy steels".
Tool steel is any of various carbon steels and alloy steels that are particularly well-suited to be made into tools and tooling, including cutting tools, dies, hand tools, knives, and others. Their suitability comes from their distinctive hardness, resistance to abrasion and deformation, and their ability to hold a cutting edge at elevated temperatures. As a result, tool steels are suited for use in the shaping of other materials, as for example in cutting, machining, stamping, or forging. With a carbon content between 0.
At atmospheric pressure, three allotropic forms of iron exist, depending on temperature: alpha iron (α-Fe, ferrite), gamma iron (γ-Fe, austenite), and delta iron (δ-Fe). At very high pressure, a fourth form exists, epsilon iron (ε-Fe, hexaferrum). Some controversial experimental evidence suggests the existence of a fifth high-pressure form that is stable at very high pressures and temperatures. The phases of iron at atmospheric pressure are important because of the differences in solubility of carbon, forming different types of steel.
This work extends the range of pathways for the production of metallic microcomponents by downscaling metal casting. This is accomplished by using either of two different molding techniques, namely femtosecond laser micromachining or lithographic silicon m ...
Carbon nanostructures formed through physical synthesis come in a variety of sizes and shapes. With the end goal of rationalizing synthetic pathways of carbon nanostructures as a function of tunable parameters in the synthesis, we investigate how the initi ...
Two new ferrito-martensitic oxide dispersion strengthened (ODS) steels reinforced with (Y, Ti, O) nanoparticles were elaborated using a high-energy attritor. The milled powder was consolidated by hot extrusion at 1050 degrees C. The two types of ODS steels ...