La trempabilité d'un alliage métallique est la profondeur à laquelle un matériau est durci après l'avoir soumis à un processus de traitement thermique. Il s’agit d’une propriété importante pour le soudage car elle est inversement proportionnelle à la soudabilité, c’est-à-dire à la facilité de soudage d’un matériau.
Lorsqu’une pièce en acier chaude est trempée, la zone en contact avec l’eau se refroidit immédiatement et sa température s’équilibre avec le milieu de trempe. Les profondeurs intérieures du matériau ne refroidissent pas aussi rapidement et, dans les pièces de grande taille, la vitesse de refroidissement peut être suffisamment lente pour permettre à l’austénite de se transformer complètement en une structure autre que la martensite ou la bainite. Cela donne une pièce qui n'a pas la même structure cristalline sur toute sa profondeur avec un noyau plus mou et une « écorce » plus dure. Le noyau le plus mou est une combinaison de ferrite et de cémentite, telle que la perlite.
La trempabilité des alliages ferreux est fonction de la taille des grains d'austénite et de leur composition chimique (Autres métaux, carbone, etc.). L'importance relative des différents composants de l'alliage est calculée en recherchant la teneur en carbone équivalent du matériau.
Le fluide utilisé pour la trempe du matériau influence la vitesse de refroidissement en raison de sa conductivité thermique et de sa capacité thermique massique. Des fluides tels que la saumure et l'eau refroidissent l'acier beaucoup plus rapidement que l'huile ou l'air. Si le fluide est agité, le refroidissement se produit encore plus rapidement. La géométrie de la pièce influe également sur le taux de refroidissement : sur deux échantillons de volume égal, celui dont la surface est la plus élevée refroidira plus rapidement.
La trempabilité d'un alliage ferreux est mesurée par l'essai Jominy. Une barre de métal ronde de taille standard est transformée en 100% d'austénite par traitement thermique. Elle est ensuite refroidie à une extrémité avec de l'eau à température ambiante.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours constitue une introduction aux principes qui régissent l'élaboration, la microstructure et les propriétés des matériaux métalliques. Trois systèmes principaux d'alliages (Al, Cu, Fe) seront u
Les TPs matériaux BA4 ont pour but d'illustrer de manière pratique les notions acquises dans les cours Introduction à la Science des Matériaux et Métaux et Alliages. L'accent est mis sur le lien entre
Ce cours est une introduction au comportement mécanique, à l'élaboration, à la structure et au cycle de vie des grandes classes de matériaux de structure (métaux, polymères, céramiques et composites)
Couvre les fondamentaux de la métallurgie, y compris les réserves mondiales de métaux, les processus de façonnage, les traitements thermiques et les propriétés de l'acier.
Alloy steel is steel that is alloyed with a variety of elements in total amounts between 1.0% and 50% by weight to improve its mechanical properties. Alloy steels are broken down into two groups: low alloy steels and high alloy steels. The difference between the two is disputed. Smith and Hashemi define the difference at 4.0%, while Degarmo, et al., define it at 8.0%. Most commonly, the phrase "alloy steel" refers to low-alloy steels. Strictly speaking, every steel is an alloy, but not all steels are called "alloy steels".
vignette Les aciers à outils, aussi appelés aciers à outil ou aciers outil, sont des aciers utilisés pour la fabrication d'outils mécaniques tels que les mèches, dés de matriçage, outils de coupe, cisailles, marteaux et burins. Ces aciers se caractérisent par de bonnes propriétés mécaniques générales à des duretés élevées (HRC supérieur à 55). On distingue les aciers de travail à froid (travail à température ambiante), les aciers de travail à chaud (travail à température élevée), les aciers rapides (conçus pour les applications à haute température, notamment la découpe à haute vitesse — forets.
At atmospheric pressure, three allotropic forms of iron exist, depending on temperature: alpha iron (α-Fe, ferrite), gamma iron (γ-Fe, austenite), and delta iron (δ-Fe). At very high pressure, a fourth form exists, epsilon iron (ε-Fe, hexaferrum). Some controversial experimental evidence suggests the existence of a fifth high-pressure form that is stable at very high pressures and temperatures. The phases of iron at atmospheric pressure are important because of the differences in solubility of carbon, forming different types of steel.
Carbon nanostructures formed through physical synthesis come in a variety of sizes and shapes. With the end goal of rationalizing synthetic pathways of carbon nanostructures as a function of tunable parameters in the synthesis, we investigate how the initi ...
This work extends the range of pathways for the production of metallic microcomponents by downscaling metal casting. This is accomplished by using either of two different molding techniques, namely femtosecond laser micromachining or lithographic silicon m ...
Two new ferrito-martensitic oxide dispersion strengthened (ODS) steels reinforced with (Y, Ti, O) nanoparticles were elaborated using a high-energy attritor. The milled powder was consolidated by hot extrusion at 1050 degrees C. The two types of ODS steels ...