In cosmology and physics, cold dark matter (CDM) is a hypothetical type of dark matter. According to the current standard model of cosmology, Lambda-CDM model, approximately 27% of the universe is dark matter and 68% is dark energy, with only a small fraction being the ordinary baryonic matter that composes stars, planets, and living organisms. Cold refers to the fact that the dark matter moves slowly compared to the speed of light, giving it a vanishing equation of state. Dark indicates that it interacts very weakly with ordinary matter and electromagnetic radiation. Proposed candidates for CDM include weakly interacting massive particles, primordial black holes, and axions. The theory of cold dark matter was originally published in 1982 by James Peebles; while the warm dark matter picture was proposed independently at the same time by J. Richard Bond, Alex Szalay, and Michael Turner; and George Blumenthal, H. Pagels, and Joel Primack. A review article in 1984 by Blumenthal, Sandra Moore Faber, Primack, and Martin Rees developed the details of the theory. In the cold dark matter theory, structure grows hierarchically, with small objects collapsing under their self-gravity first and merging in a continuous hierarchy to form larger and more massive objects. Predictions of the cold dark matter paradigm are in general agreement with observations of cosmological large-scale structure. In the hot dark matter paradigm, popular in the early 1980s and less so now, structure does not form hierarchically (bottom-up), but forms by fragmentation (top-down), with the largest superclusters forming first in flat pancake-like sheets and subsequently fragmenting into smaller pieces like our galaxy the Milky Way. Since the late 1980s or 1990s, most cosmologists favor the cold dark matter theory (specifically the modern Lambda-CDM model) as a description of how the universe went from a smooth initial state at early times (as shown by the cosmic microwave background radiation) to the lumpy distribution of galaxies and their clusters we see today—the large-scale structure of the universe.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (9)
PHYS-439: Introduction to astroparticle physics
We present the role of particle physics in cosmology and in the description of astrophysical phenomena. We also present the methods and technologies for the observation of cosmic particles.
PHYS-402: Astrophysics V : observational cosmology
Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen from the point of view of observations.
PHYS-433: Semiconductor physics and light-matter interaction
Lectures on the fundamental aspects of semiconductor physics and the main properties of the p-n junction that is at the heart of devices like LEDs & laser diodes. The last part deals with light-matter
Show more
Related lectures (30)
Astroparticle Physics: Neutrinos and Dark Matter
Explores the dynamics of the Universe, neutrinos, relic neutrino background, dark matter candidates, and WIMPs.
Dark Matter Indirect Detection
Explores dark matter indirect detection methods, including WIMPs, gamma-ray observations, and supermassive black holes.
Numerical Methods in Hydrodynamics
Covers numerical methods in hydrodynamics, ideal fluids, plasma universe, dark matter simulation, and baryon modeling.
Show more
Related publications (156)

A too-many-dwarf-galaxy-satellites problem in the M 83 group

Yves Revaz, Oliver Müller

Dwarf galaxies in groups of galaxies provide excellent test cases for models of structure formation. This led to a so-called small-scale crisis, including the famous missing-satellites and too-big-to-fail problems. It was suggested that these two problems ...
Edp Sciences S A2024

COSMOS-Web: Intrinsically Luminous z ≳ 10 Galaxy Candidates Test Early Stellar Mass Assembly

Michaela Hirschmann

We report the discovery of 15 exceptionally luminous 10 less than or similar to z less than or similar to 14 candidate galaxies discovered in the first 0.28 deg(2) of JWST/NIRCam imaging from the COSMOS-Web survey. These sources span rest-frame UV magnitud ...
Iop Publishing Ltd2024

Euclid preparation XXXVI. Modelling the weak lensing angular power spectrum

Frédéric Courbin, Georges Meylan, Gianluca Castignani, Austin Chandler Peel, Maurizio Martinelli, Yi Wang, Richard Massey, Fabio Finelli, Marcello Farina

This work considers which higher order modeling e ffects on the cosmic shear angular power spectra must be taken into account for Euclid. We identified the relevant terms and quantified their individual and cumulative impact on the cosmological parameter i ...
Edp Sciences S A2024
Show more
Related concepts (20)
Dark energy
In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the universe does not expand at a constant rate; rather, the universe's expansion is accelerating. Understanding the universe's evolution requires knowledge of its starting conditions and composition. Before these observations, scientists thought that all forms of matter and energy in the universe would only cause the expansion to slow down over time.
Weakly interacting massive particle
Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter. There exists no formal definition of a WIMP, but broadly, it is a new elementary particle which interacts via gravity and any other force (or forces), potentially not part of the Standard Model itself, which is as weak as or weaker than the weak nuclear force, but also non-vanishing in its strength.
Observable universe
The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time; the electromagnetic radiation from these objects has had time to reach the Solar System and Earth since the beginning of the cosmological expansion. Initially, it was estimated that there may be 2 trillion galaxies in the observable universe, although that number was reduced in 2021 to only several hundred billion based on data from New Horizons.
Show more
Related MOOCs (5)
Introduction to Astrophysics
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Introduction à l'Astrophysique
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Introduction to Astrophysics
Learn about the physical phenomena at play in astronomical objects and link theoretical predictions to observations.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.