In fluid dynamics, the Reynolds stress is the component of the total stress tensor in a fluid obtained from the averaging operation over the Navier–Stokes equations to account for turbulent fluctuations in fluid momentum. The velocity field of a flow can be split into a mean part and a fluctuating part using Reynolds decomposition. We write with being the flow velocity vector having components in the coordinate direction (with denoting the components of the coordinate vector ). The mean velocities are determined by either time averaging, spatial averaging or ensemble averaging, depending on the flow under study. Further denotes the fluctuating (turbulence) part of the velocity. We consider a homogeneous fluid, whose density ρ is taken to be a constant. For such a fluid, the components τ'''ij of the Reynolds stress tensor are defined as: Another – often used – definition, for constant density, of the Reynolds stress components is: which has the dimensions of velocity squared, instead of stress. To illustrate, Cartesian vector index notation is used. For simplicity, consider an incompressible fluid: Given the fluid velocity as a function of position and time, write the average fluid velocity as , and the velocity fluctuation is . Then . The conventional ensemble rules of averaging are that One splits the Euler equations (fluid dynamics) or the Navier-Stokes equations into an average and a fluctuating part. One finds that upon averaging the fluid equations, a stress on the right hand side appears of the form . This is the Reynolds stress, conventionally written : The divergence of this stress is the force density on the fluid due to the turbulent fluctuations. Reynolds-averaged Navier–Stokes equations For instance, for an incompressible, viscous, Newtonian fluid, the continuity and momentum equations—the incompressible Navier–Stokes equations—can be written (in a non-conservative form) as and where is the Lagrangian derivative or the substantial derivative, Defining the flow variables above with a time-averaged component and a fluctuating component, the continuity and momentum equations become and Examining one of the terms on the left hand side of the momentum equation, it is seen that where the last term on the right hand side vanishes as a result of the continuity equation.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.