Concept

Particle accelerator

A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle physics. The largest accelerator currently active is the Large Hadron Collider (LHC) near Geneva, Switzerland, operated by the CERN. It is a collider accelerator, which can accelerate two beams of protons to an energy of 6.5 TeV and cause them to collide head-on, creating center-of-mass energies of 13 TeV. Other powerful accelerators are, RHIC at Brookhaven National Laboratory in New York and, formerly, the Tevatron at Fermilab, Batavia, Illinois. Accelerators are also used as synchrotron light sources for the study of condensed matter physics. Smaller particle accelerators are used in a wide variety of applications, including particle therapy for oncological purposes, radioisotope production for medical diagnostics, ion implanters for the manufacture of semiconductors, and accelerator mass spectrometers for measurements of rare isotopes such as radiocarbon. There are currently more than 30,000 accelerators in operation around the world. There are two basic classes of accelerators: electrostatic and electrodynamic (or electromagnetic) accelerators. Electrostatic particle accelerators use static electric fields to accelerate particles. The most common types are the Cockcroft–Walton generator and the Van de Graaff generator. A small-scale example of this class is the cathode ray tube in an ordinary old television set. The achievable kinetic energy for particles in these devices is determined by the accelerating voltage, which is limited by electrical breakdown. Electrodynamic or electromagnetic accelerators, on the other hand, use changing electromagnetic fields (either magnetic induction or oscillating radio frequency fields) to accelerate particles. Since in these types the particles can pass through the same accelerating field multiple times, the output energy is not limited by the strength of the accelerating field.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (30)
PHYS-204: Physics lab IIa
Ce cours pratique permet d'acquérir la connaissance des phénomènes physiques de base ainsi que de leurs applications, d'acquérir des connaissances concernant les méthodes d'observation et de mesure ai
PHYS-211: Physics lab IIb
Ce cours pratique permet d'acquérir la connaissance des phénomènes physiques de base ainsi que de leurs applications, d'acquérir des connaissances concernant les méthodes d'observation et de mesure ai
PHYS-448: Introduction to particle accelerators
The course presents basic physics ideas underlying the workings of modern accelerators. We will examine key features and limitations of these machines as used in accelerator driven sciences like high
Show more
Related lectures (101)
Gauge Theories And Modern Particle Physics
Covers gauge theories, modern particle physics, the standard model, and field content.
Free electron lasers
Explores free electron lasers, covering light sources, brilliance, X-ray sources, FEL modes, and electron beam requirements.
Introduction to Plasma Physics
Covers the dynamics of particles in electric and magnetic fields in plasma physics.
Show more
Related publications (718)

High power electrostatic beam splitter for a proton beamline

Mike Seidel, Hua Zhang

The High Intensity Proton Accelerator facility (HIPA) delivers a 590 MeV cw (50.6 MHz) proton beam with up to 1.4 MW beam power (2.4 mA) to spallation and meson production targets serving particle physics experiments and material research. The main acceler ...
2024

Beam Loss Simulations for the Proposed TATTOS Beamline at HIPA

Mike Seidel, Hui Zhang

IMPACT (Isotope and Muon Production with Advanced Cyclotron and Target Technologies) is a proposed initia- tive envisaged for the high-intensity proton accelerator fa- cility (HIPA) at the Paul Scherrer Institute (PSI). As part of IMPACT, a radioisotope ta ...
JACoW (Joint Accelerator Conferences Website)2024

Hosing of a Long Relativistic Particle Bunch in Plasma

Ambrogio Fasoli, Ivo Furno, Patrick Blanchard, Yanis Andrebe, Riccardo Agnello, Christine Stollberg, Sun Hee Kim, Alban Sublet, Shuai Liu

Experimental results show that hosing of a long particle bunch in plasma can be induced by wakefields driven by a short, misaligned preceding bunch. Hosing develops in the plane of misalignment, selfmodulation in the perpendicular plane, at frequencies clo ...
Amer Physical Soc2024
Show more
Related concepts (69)
X-ray spectroscopy
X-ray spectroscopy is a general term for several spectroscopic techniques for characterization of materials by using x-ray radiation. When an electron from the inner shell of an atom is excited by the energy of a photon, it moves to a higher energy level. When it returns to the low energy level, the energy which it previously gained by the excitation is emitted as a photon which has a wavelength that is characteristic for the element (there could be several characteristic wavelengths per element).
International Linear Collider
The International Linear Collider (ILC) is a proposed linear particle accelerator. It is planned to have a collision energy of 500 GeV initially, with the possibility for a later upgrade to 1000 GeV (1 TeV). Although early proposed locations for the ILC were Japan, Europe (CERN) and the USA (Fermilab), the Kitakami highland in the Iwate prefecture of northern Japan has been the focus of ILC design efforts since 2013. The Japanese government is willing to contribute half of the costs, according to the coordinator of study for detectors at the ILC.
Budker Institute of Nuclear Physics
The Budker Institute of Nuclear Physics (BINP) is one of the major centres of advanced study of nuclear physics in Russia. It is located in the Siberian town Akademgorodok, on Academician Lavrentiev Avenue. The institute was founded by Gersh Budker in 1959. Following his death in 1977, the institute was renamed in honour of Budker. Despite its name, the centre was not involved either with military atomic science or nuclear reactors instead, its concentration was on high-energy physics (particularly plasma physics) and particle physics.
Show more
Related MOOCs (10)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.