Un accélérateur de particules est un instrument qui utilise des champs électriques ou magnétiques pour amener des particules chargées électriquement à des vitesses élevées. En d'autres termes, il communique de l'énergie aux particules. On en distingue deux grandes catégories : les accélérateurs linéaires et les accélérateurs circulaires.
En 2004, il y avait plus de dans le monde. Une centaine seulement sont de très grosses installations, nationales ou supranationales. Les machines électrostatiques de type industriel composent plus de 80 % du parc mondial des accélérateurs industriels d'électrons. De très nombreux petits accélérateurs linéaires sont utilisés en médecine (radiothérapie anti-tumorale).
En 1919, le physicien Ernest Rutherford (1871-1938) transforma des atomes d'azote en isotopes d'atome d'oxygène en les bombardant avec des particules alpha engendrées par un isotope radioactif naturel. Mais l'étude de l'atome et surtout de son noyau nécessite de très hautes énergies. Les particules provenant des radio-éléments naturels sont trop peu nombreuses et peu énergétiques pour pénétrer la barrière de potentiel du noyau des éléments les plus lourds. Le potentiel à la surface nucléaire croît d'un million de volts pour l'hydrogène ordinaire à 16 millions pour l'uranium. Les astroparticules (rayons cosmiques) ont permis des découvertes majeures mais leur énergie est très variable et il faut aller les chercher en altitude où elles sont moins rares et plus énergétiques. Dans les années 1920, il apparaît évident qu'une étude plus approfondie de la structure de la matière allait nécessiter des faisceaux plus énergétiques et plus contrôlés de particules. La source des particules chargées était variée. Les décharges dans les gaz produisent des ions, alors que pour les électrons, il était possible d'utiliser l'émission par un fil chauffé ou d'autres systèmes. L'énergie (E) d'une particule dans un champ électrique correspond au produit de sa charge (q) multiplié par la tension (U) du champ : E = q.U.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours pratique permet d'acquérir la connaissance des phénomènes physiques de base ainsi que de leurs applications, d'acquérir des connaissances concernant les méthodes d'observation et de mesure ai
Ce cours pratique permet d'acquérir la connaissance des phénomènes physiques de base ainsi que de leurs applications, d'acquérir des connaissances concernant les méthodes d'observation et de mesure ai
The course presents basic physics ideas underlying the workings of modern accelerators. We will examine key features and limitations of these machines as used in accelerator driven sciences like high
La spectroscopie des rayons X rassemble plusieurs techniques de caractérisation spectroscopique de matériaux par excitation par rayons X. Trois familles de techniques sont le plus souvent utilisées. Selon les phénomènes mis en jeu, on distingue trois classes : L'analyse se fait par l'une des deux méthodes suivantes : analyse dispersive en énergie (Energy-dispersive x-ray analysis (EDXA) en anglais) ; analyse dispersive en longueur d'onde (Wavelength dispersive x-ray analysis (WDXA) en anglais).
The International Linear Collider (ILC) is a proposed linear particle accelerator. It is planned to have a collision energy of 500 GeV initially, with the possibility for a later upgrade to 1000 GeV (1 TeV). Although early proposed locations for the ILC were Japan, Europe (CERN) and the USA (Fermilab), the Kitakami highland in the Iwate prefecture of northern Japan has been the focus of ILC design efforts since 2013. The Japanese government is willing to contribute half of the costs, according to the coordinator of study for detectors at the ILC.
L'Institut de physique nucléaire Budker est l'un des centres de recherche les plus importants de Russie dans le domaine de la physique nucléaire. Il se situe en Sibérie dans la ville de Akademgorodok, sur l'avenue Lavrentiev. L'institut a été fondé par Gersh Itskovich Budker en 1959. Il a été rebaptisé en son honneur après sa mort en 1977. Même si son nom pourrait le laisser croire, l'activité de l'institut n'a jamais été liée à la recherche nucléaire militaire ou au domaine de l'énergie nucléaire.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Explore les lasers à électrons libres, couvrant les sources de lumière, la brillance, les sources de rayons X, les modes FEL et les exigences de faisceau d'électrons.
The High Intensity Proton Accelerator facility (HIPA) delivers a 590 MeV cw (50.6 MHz) proton beam with up to 1.4 MW beam power (2.4 mA) to spallation and meson production targets serving particle physics experiments and material research. The main acceler ...
IMPACT (Isotope and Muon Production with Advanced Cyclotron and Target Technologies) is a proposed initia- tive envisaged for the high-intensity proton accelerator fa- cility (HIPA) at the Paul Scherrer Institute (PSI). As part of IMPACT, a radioisotope ta ...
JACoW (Joint Accelerator Conferences Website)2024
, , , , , , , ,
Experimental results show that hosing of a long particle bunch in plasma can be induced by wakefields driven by a short, misaligned preceding bunch. Hosing develops in the plane of misalignment, selfmodulation in the perpendicular plane, at frequencies clo ...