Lenz's law states that the direction of the electric current induced in a conductor by a changing magnetic field is such that the magnetic field created by the induced current opposes changes in the initial magnetic field. It is named after physicist Emil Lenz, who formulated it in 1834.
It is a qualitative law that specifies the direction of induced current, but states nothing about its magnitude. Lenz's law predicts the direction of many effects in electromagnetism, such as the direction of voltage induced in an inductor or wire loop by a changing current, or the drag force of eddy currents exerted on moving objects in a magnetic field.
Lenz's law may be seen as analogous to Newton's third law in classical mechanics and Le Chatelier's principle in chemistry.
Lenz's law states that:
The current induced in a circuit due to a change in a magnetic field is directed to oppose the change in flux and to exert a mechanical force which opposes the motion.
Lenz's law is contained in the rigorous treatment of Faraday's law of induction (the magnitude of EMF induced in a coil is proportional to the rate of change of the magnetic field), where it finds expression by the negative sign:
which indicates that the induced electromotive force and the rate of change in magnetic flux have opposite signs.
This means that the direction of the back EMF of an induced field opposes the changing current that is its cause. D.J. Griffiths summarized it as follows: Nature abhors a change in flux.
If a change in the magnetic field of current i1 induces another electric current, i2, the direction of i2 is opposite that of the change in i1. If these currents are in two coaxial circular conductors l1 and l2 respectively, and both are initially 0, then the currents i1 and i2 must counter-rotate. The opposing currents will repel each other as a result.
Magnetic fields from strong magnets can create counter-rotating currents in a copper or aluminium pipe. This is shown by dropping the magnet through the pipe.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course provides the basis to understand the physics, the key performance, and the research and industrial applications of magnetic sensors and actuators. Together with a detailed introduction to m
Faraday's law of induction (or simply Faraday's law) is a basic law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf)—a phenomenon known as electromagnetic induction. It is the fundamental operating principle of transformers, inductors, and many types of electric motors, generators and solenoids.
In electromagnetism, eddy currents (also called Foucault's currents) are loops of electric current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnetic field. Eddy currents flow in closed loops within conductors, in planes perpendicular to the magnetic field. They can be induced within nearby stationary conductors by a time-varying magnetic field created by an AC electromagnet or transformer, for example, or by relative motion between a magnet and a nearby conductor.
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction. Lenz's law describes the direction of the induced field. Faraday's law was later generalized to become the Maxwell–Faraday equation, one of the four Maxwell equations in his theory of electromagnetism.
The objective of this thesis is the development of high-field and high-current joints between Nb3Sn cables for superconducting coils. The main fields of application are high energy physics (HEP) and thermonuclear fusion. In this thesis, the focus is on Win ...
Radiation from magnetic and electric dipole moments is a key subject in the theory of electrodynamics. Although people treat the problem thoroughly in the context of the frequency domain, the problem is still not well understood in the context of the time ...
2020
, ,
Previous studies provide strong evidence for the therapeutic effect of electromagnetic fields (EMFs) on different tissues including cartilage. Diverse exposure parameters applied in scientific reports and the unknown interacting mechanism of EMF with biolo ...