The public goods game is a standard of experimental economics. In the basic game, subjects secretly choose how many of their private tokens to put into a public pot. The tokens in this pot are multiplied by a factor (greater than one and less than the number of players, N) and this "public good" payoff is evenly divided among players. Each subject also keeps the tokens they do not contribute.
Public goods games are fundamental in experimental economics. The nature of the experiment is incentives and the problem of free riding. Public goods games investigate the incentives of individuals who free-ride off individuals who are contributing to the common pool.
A public goods game investigates behavioural economics and the actions of the players in the game. In this process, it seeks to use behavioural economics to understand the decisions of its players. It extends further to free-riding, which has far-reaching applications to environmental, managerial and social economics. Public goods games are valuable in understanding the role of incentives in an individual's behaviours. They arise from behavioural economics and have broad applications to societal challenges. Examples of applications include environmental policy, legal and justice issues and workplace and organisational structures.
The group's total payoff is maximized when everyone contributes all of their tokens to the public pool. However, the Nash equilibrium in this game is simply zero contributions by all; if the experiment were a purely analytical exercise in game theory it would resolve to zero contributions because any rational agent does best contributing zero, regardless of whatever anyone else does. This only holds if the multiplication factor is less than the number of players, otherwise, the Nash equilibrium is for all players to contribute all of their tokens to the public pool.
In fact, the Nash equilibrium is rarely seen in experiments; people do tend to add something into the pot. The actual levels of contribution found varies widely (anywhere from 0% to 100% of initial endowment can be chipped in).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Inequity aversion (IA) is the preference for fairness and resistance to incidental inequalities. The social sciences that study inequity aversion include sociology, economics, psychology, anthropology, and ethology. Researches on inequity aversion aim to explain behaviors that are not purely driven by self-interests but fairness considerations. In some literature, the terminology inequality aversion was used in the places of inequity aversion.
Cooperation (written as co-operation in British English and, rarely, coöperation) is the process of groups of organisms working or acting together for common, mutual, or some underlying benefit, as opposed to working in competition for selfish benefit. Many animal and plant species cooperate both with other members of their own species and with members of other species (symbiosis or mutualism).
The ultimatum game is a game that has become a popular instrument of economic experiments. An early description is by Nobel laureate John Harsanyi in 1961. One player, the proposer, is endowed with a sum of money. The proposer is tasked with splitting it with another player, the responder (who knows what the total sum is). Once the proposer communicates his decision, the responder may accept it or reject it. If the responder accepts, the money is split per the proposal; if the responder rejects, both players receive nothing.
We investigate the problem of multi-agent coordination under rationality constraints. Specifically, role allocation, task assignment, resource allocation, etc. Inspired by human behavior, we propose a framework (CA^3NONY) that enables fast convergence to e ...
International Foundation for Autonomous Agents and Multiagent Systems2019
,
We study minimal single-task peer prediction mechanisms that have limited knowledge about agents' beliefs. Without knowing what agents' beliefs are or eliciting additional information, it is not possible to design a truthful mechanism in a Bayesian-Nash se ...
This paper explores how robotic teammates can enhance and promote cooperation in collaborative settings. It presents a user study in which participants engaged with two fully autonomous robotic partners to play a game together, named "For The Record", a va ...