The Mariana Trench is an oceanic trench located in the western Pacific Ocean, about east of the Mariana Islands; it is the deepest oceanic trench on Earth. It is crescent-shaped and measures about in length and in width. The maximum known depth is at the southern end of a small slot-shaped valley in its floor known as the Challenger Deep. The deepest point of the trench is more than farther from sea level than the peak of Mount Everest.
At the bottom of the trench, the water column above exerts a pressure of , more than 1,071 times the standard atmospheric pressure at sea level. At this pressure, the density of water is increased by 4.96%. The temperature at the bottom is .
In 2009, the Mariana Trench was established as a US National Monument.
One-celled organisms called monothalamea have been found in the trench by Scripps Institution of Oceanography researchers at a record depth of below the sea surface. Data has also suggested that microbial life forms thrive within the trench.
The Mariana Trench is named after the nearby Mariana Islands, which are named Las Marianas in honor of Spanish Queen Mariana of Austria. The islands are part of the island arc that is formed on an over-riding plate, called the Mariana Plate (also named for the islands), on the western side of the trench.
The Mariana Trench is part of the Izu–Bonin–Mariana subduction system that forms the boundary between two tectonic plates. In this system, the western edge of one plate, the Pacific Plate, is subducted (i.e., thrust) beneath the smaller Mariana Plate that lies to the west. Crustal material at the western edge of the Pacific Plate is some of the oldest oceanic crust on Earth (up to 170 million years old), and is, therefore, cooler and denser; hence its great height difference relative to the higher-riding (and younger) Mariana Plate. The deepest area at the plate boundary is the Mariana Trench proper.
The movement of the Pacific and Mariana plates is also indirectly responsible for the formation of the Mariana Islands.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Plate tectonics (from the tectonicus, from the τεκτονικός) is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates which have been slowly moving since about 3.4 billion years ago. The model builds on the concept of continental drift, an idea developed during the first decades of the 20th century. Plate tectonics came to be accepted by geoscientists after seafloor spreading was validated in the mid-to-late 1960s.
The Challenger Deep is the deepest known point of the seabed of Earth. Its depth is measured at by direct measurement from deep-diving submersibles, remotely operated underwater vehicles and benthic landers, and (sometimes) slightly more by sonar bathymetry. The Challenger Deep is located in the western Pacific Ocean, at the southern end of the Mariana Trench, near the Mariana Islands. According to the August 2011 version of the GEBCO Gazetteer of Undersea Feature Names, the Challenger Deep is deep at .
Oceanic trenches are prominent, long, narrow topographic depressions of the ocean floor. They are typically wide and below the level of the surrounding oceanic floor, but can be thousands of kilometers in length. There are about of oceanic trenches worldwide, mostly around the Pacific Ocean, but also in the eastern Indian Ocean and a few other locations. The greatest ocean depth measured is in the Challenger Deep of the Mariana Trench, at a depth of below sea level. Oceanic trenches are a feature of the Earth's distinctive plate tectonics.
A method for driving piezoelectric elements of a micro-system. The piezoelectric elements comprising a ferroelectric thin film, and being configured to be part of any one or a combination of items of a list comprising: a cantilever, a bridge, a diaphragm, ...
Atomic layer deposition (ALD) is one of the premier methods to synthesize ultra-thin materials on complex surfaces. The technique allows for precise control of the thickness down to single atomic layers, while at the same time providing uniform coverage ev ...
Hoboken2024
, ,
We propose a non-contact surface finishing method for brittle substrates by ion beam etching and we experimentally demonstrate polishing of (100) single crystal diamond surface. We model and simulate the polishing process, and verify the results experiment ...