Publication

Actuation of piezoelectric structures with ferroelectric thin films having multiple elements

Paul Muralt
2020
Patent
Abstract

A method for driving piezoelectric elements of a micro-system. The piezoelectric elements comprising a ferroelectric thin film, and being configured to be part of any one or a combination of items of a list comprising: a cantilever, a bridge, a diaphragm, a manifold of complex patterns of plates that may include trenches, slits, and include plate elements having different thickness; and being further configured to comprise at least 2 types of parallel plate electrode capacitors, the first type of capacitor having on a first side of the ferroelectric thin film a first type of electrode and the second type of capacitor having a second type of electrode electrically disjoined from the first type of electrode, forming a patterned surface of electrodes of the first side, and the first and second type of capacitors having a common electrode on a second side of the ferroelectric thin film opposite to the first side, and configured to face both the first type of electrode and the second type of electrode. The ferroelectric thin film is fixed on an elastic layer, forming together an elastic structure. The method comprises exciting in at least an exciting burst of an alternating electrical driving signal distributed to a first and a second signal, each active in different halves of the vibration period, and of one polarity only, thus substantially zero, in the other half period when it is not active, whereby the first and the second signal may have either one of the same polarity in their active half period, or opposite polarity, the first signal driving the first type of capacitor during a first half of a vibration period, and the second signal driving the second type of capacitor during a second half of the vibration period, thereby enabling an excitation of a flexural elastic structure, therewith enabling a deformation of the elastic structure, whereby further the vibration period is configured to correspond to a basic resonance of the elastic structure, the exciting burst comprising a determined number of resonance cycles.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.