Summary
A language model is a probabilistic model of a natural language that can generate probabilities of a series of words, based on text corpora in one or multiple languages it was trained on. Large language models, as their most advanced form, are a combination of feedforward neural networks and transformers. They have superseded recurrent neural network-based models, which had previously superseded the pure statistical models, such as word n-gram language model. Language models are useful for a variety of tasks, including speech recognition (helping prevent predictions of low-probability (e.g. nonsense) sequences), machine translation, natural language generation (generating more human-like text), optical character recognition, handwriting recognition, grammar induction, information retrieval, and other. Maximum entropy language models encode the relationship between a word and the n-gram history using feature functions. The equation is where is the partition function, is the parameter vector, and is the feature function. In the simplest case, the feature function is just an indicator of the presence of a certain n-gram. It is helpful to use a prior on or some form of regularization. The log-bilinear model is another example of an exponential language model. Continuous representations or embeddings of words are produced in recurrent neural network-based language models (known also as continuous space language models). Such continuous space embeddings help to alleviate the curse of dimensionality, which is the consequence of the number of possible sequences of words increasing exponentially with the size of the vocabulary, furtherly causing a data sparsity problem. Neural networks avoid this problem by representing words as non-linear combinations of weights in a neural net. Although sometimes matching human performance, it is not clear they are plausible cognitive models. At least for recurrent neural networks it has been shown that they sometimes learn patterns which humans do not learn, but fail to learn patterns that humans typically do learn.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (22)
CS-423: Distributed information systems
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
EE-608: Deep Learning For Natural Language Processing
The Deep Learning for NLP course provides an overview of neural network based methods applied to text. The focus is on models particularly suited to the properties of human language, such as categori
EE-724: Human language technology: applications to information access
The Human Language Technology (HLT) course introduces methods and applications for language processing and generation, using statistical learning and neural networks.
Show more