A language model is a probabilistic model of a natural language that can generate probabilities of a series of words, based on text corpora in one or multiple languages it was trained on. Large language models, as their most advanced form, are a combination of feedforward neural networks and transformers. They have superseded recurrent neural network-based models, which had previously superseded the pure statistical models, such as word n-gram language model.
Language models are useful for a variety of tasks, including speech recognition (helping prevent predictions of low-probability (e.g. nonsense) sequences), machine translation, natural language generation (generating more human-like text), optical character recognition, handwriting recognition, grammar induction, information retrieval, and other.
Maximum entropy language models encode the relationship between a word and the n-gram history using feature functions. The equation is
where is the partition function, is the parameter vector, and is the feature function. In the simplest case, the feature function is just an indicator of the presence of a certain n-gram. It is helpful to use a prior on or some form of regularization.
The log-bilinear model is another example of an exponential language model.
Continuous representations or embeddings of words are produced in recurrent neural network-based language models (known also as continuous space language models). Such continuous space embeddings help to alleviate the curse of dimensionality, which is the consequence of the number of possible sequences of words increasing exponentially with the size of the vocabulary, furtherly causing a data sparsity problem. Neural networks avoid this problem by representing words as non-linear combinations of weights in a neural net.
Although sometimes matching human performance, it is not clear they are plausible cognitive models. At least for recurrent neural networks it has been shown that they sometimes learn patterns which humans do not learn, but fail to learn patterns that humans typically do learn.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
The Deep Learning for NLP course provides an overview of neural network based methods applied to text. The focus is on models particularly suited to the properties of human language, such as categori
The Human Language Technology (HLT) course introduces methods and applications for language processing and generation, using statistical learning and neural networks.
Deep learning is part of a broader family of machine learning methods, which is based on artificial neural networks with representation learning. The adjective "deep" in deep learning refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.
n-gram is a series of n adjacent letters (including punctuation marks and blanks), syllables, or rarely whole words found in a language dataset; or adjacent phonemes extracted from a speech-recording dataset, or adjacent base pairs extracted from a genome. They are collected from a text or speech corpus. If Latin numerical prefixes are used, then n-gram of size 1 is called a "unigram", size 2 a "bigram" (or, less commonly, a "digram") etc. If, instead of the Latin ones, the English cardinal numbers are furtherly used, then they are called "four-gram", "five-gram", etc.
Natural language generation (NLG) is a software process that produces natural language output. A widely-cited survey of NLG methods describes NLG as "the subfield of artificial intelligence and computational linguistics that is concerned with the construction of computer systems than can produce understandable texts in English or other human languages from some underlying non-linguistic representation of information". While it is widely agreed that the output of any NLG process is text, there is some disagreement about whether the inputs of an NLG system need to be non-linguistic.
The project introduces an innovative visual method for analysing libraries and archives, with a focus on Bibliotheca Hertziana’s library collection. This collection, which dates back over a century, is examined by integrating user loan data with deep mappi ...
2024
The ability to reason, plan and solve highly abstract problems is a hallmark of human intelligence. Recent advancements in artificial intelligence, propelled by deep neural networks, have revolutionized disciplines like computer vision and natural language ...
EPFL2024
Transformer models such as GPT generate human-like language and are predictive of human brain responses to language. Here, using functional-MRI-measured brain responses to 1,000 diverse sentences, we first show that a GPT-based encoding model can predict t ...