Concept

Impredicativity

In mathematics, logic and philosophy of mathematics, something that is impredicative is a self-referencing definition. Roughly speaking, a definition is impredicative if it invokes (mentions or quantifies over) the set being defined, or (more commonly) another set that contains the thing being defined. There is no generally accepted precise definition of what it means to be predicative or impredicative. Authors have given different but related definitions. The opposite of impredicativity is predicativity, which essentially entails building stratified (or ramified) theories where quantification over lower levels results in variables of some new type, distinguished from the lower types that the variable ranges over. A prototypical example is intuitionistic type theory, which retains ramification so as to discard impredicativity. Russell's paradox is a famous example of an impredicative construction—namely the set of all sets that do not contain themselves. The paradox is that such a set cannot exist: If it would exist, the question could be asked whether it contains itself or not — if it does then by definition it should not, and if it does not then by definition it should. The greatest lower bound of a set , glb(), also has an impredicative definition: = glb() if and only if for all elements of , is less than or equal to , and any less than or equal to all elements of is less than or equal to . This definition quantifies over the set (potentially infinite, depending on the order in question) whose members are the lower bounds of , one of which being the glb itself. Hence predicativism would reject this definition. The terms "predicative" and "impredicative" were introduced by , though the meaning has changed a little since then. Solomon Feferman provides a historical review of predicativity, connecting it to current outstanding research problems. The vicious circle principle was suggested by Henri Poincaré (1905-6, 1908) and Bertrand Russell in the wake of the paradoxes as a requirement on legitimate set specifications.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MATH-381: Mathematical logic
Branche des mathématiques en lien avec le fondement des mathématiques et l'informatique théorique. Le cours est centré sur la logique du 1er ordre et l'articulation entre syntaxe et sémantique.
Related concepts (16)
Axiom of reducibility
The axiom of reducibility was introduced by Bertrand Russell in the early 20th century as part of his ramified theory of types. Russell devised and introduced the axiom in an attempt to manage the contradictions he had discovered in his analysis of set theory. With Russell's discovery (1901, 1902) of a paradox in Gottlob Frege's 1879 Begriffsschrift and Frege's acknowledgment of the same (1902), Russell tentatively introduced his solution as "Appendix B: Doctrine of Types" in his 1903 The Principles of Mathematics.
Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language.
Burali-Forti paradox
In set theory, a field of mathematics, the Burali-Forti paradox demonstrates that constructing "the set of all ordinal numbers" leads to a contradiction and therefore shows an antinomy in a system that allows its construction. It is named after Cesare Burali-Forti, who, in 1897, published a paper proving a theorem which, unknown to him, contradicted a previously proved result by Cantor.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.