The axiom of reducibility was introduced by Bertrand Russell in the early 20th century as part of his ramified theory of types. Russell devised and introduced the axiom in an attempt to manage the contradictions he had discovered in his analysis of set theory.
With Russell's discovery (1901, 1902) of a paradox in Gottlob Frege's 1879 Begriffsschrift and Frege's acknowledgment of the same (1902), Russell tentatively introduced his solution as "Appendix B: Doctrine of Types" in his 1903 The Principles of Mathematics. This contradiction can be stated as "the class of all classes that do not contain themselves as elements". At the end of this appendix Russell asserts that his "doctrine" would solve the immediate problem posed by Frege, but "there is at least one closely analogous contradiction which is probably not soluble by this doctrine. The totality of all logical objects, or of all propositions, involves, it would seem a fundamental logical difficulty. What the complete solution of the difficulty may be, I have not succeeded in discovering; but as it affects the very foundations of reasoning..."
By the time of his 1908 Mathematical logic as based on the theory of types Russell had studied "the contradictions" (among them the Epimenides paradox, the Burali-Forti paradox, and Richard's paradox) and concluded that "In all the contradictions there is a common characteristic, which we may describe as self-reference or reflexiveness".
In 1903, Russell defined predicative functions as those whose order is one more than the highest-order function occurring in the expression of the function. While these were fine for the situation, impredicative functions had to be disallowed:
A function whose argument is an individual and whose value is always a first-order proposition will be called a first-order function. A function involving a first-order function or proposition as apparent variable will be called a second-order function, and so on.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In the philosophy of mathematics, formalism is the view that holds that statements of mathematics and logic can be considered to be statements about the consequences of the manipulation of strings (alphanumeric sequences of symbols, usually as equations) using established manipulation rules. A central idea of formalism "is that mathematics is not a body of propositions representing an abstract sector of reality, but is much more akin to a game, bringing with it no more commitment to an ontology of objects or properties than ludo or chess.
In mathematics, logic and philosophy of mathematics, something that is impredicative is a self-referencing definition. Roughly speaking, a definition is impredicative if it invokes (mentions or quantifies over) the set being defined, or (more commonly) another set that contains the thing being defined. There is no generally accepted precise definition of what it means to be predicative or impredicative. Authors have given different but related definitions.
In mathematical logic, New Foundations (NF) is an axiomatic set theory, conceived by Willard Van Orman Quine as a simplification of the theory of types of Principia Mathematica. Quine first proposed NF in a 1937 article titled "New Foundations for Mathematical Logic"; hence the name. Much of this entry discusses NF with urelements (NFU), an important variant of NF due to Jensen and clarified by Holmes. In 1940 and in a revision in 1951, Quine introduced an extension of NF sometimes called "Mathematical Logic" or "ML", that included proper classes as well as sets.
We introduce the first program synthesis engine implemented inside an SMT solver. We present an approach that extracts solution functions from unsatisfiability proofs of the negated form of synthesis conjectures. We also discuss novel counterexample-guided ...
SPRINGER2019
,
We introduce the first program synthesis engine implemented inside an SMT solver. We present an approach that extracts solution functions from unsatisfiability proofs of the negated form of synthesis conjectures. We also discuss novel counterexample-guided ...