Concept

Surface de Zoll

vignette|Exemple de surface de Zoll En mathématiques, plus particulièrement en géométrie différentielle, une surface de Zoll, portant le nom d'Otto Zoll, est une surface homéomorphe à la sphère de dimension 2, pourvue d'une métrique riemannienne dont toutes les géodésiques sont fermées et d'égale longueur. Bien que la métrique de la sphère unité habituelle sur ait évidemment cette propriété, il existe également une famille de dimension infinie de déformations géométriquement distinctes qui sont des surfaces de Zoll. En particulier, la plupart des surfaces de Zoll ne sont pas de courbure constante. Zoll, élève de David Hilbert, a découvert les premiers exemples non triviaux. Certaines surfaces de Zoll possèdent une symétrie de révolution ; elles ont été étudiées par Gaston Darboux en 1880 et totalement classifiées en 1978 par René Michel. En revanche selon un résultat de 1963 de Leon Green, aucune surface de Zoll, hormis la sphère standard, ne respecte la symétrie antipodale. L'analogue du problème de Zoll sur le plan projectif n'admet donc pas d'autre solution que la métrique canonique. Besse, A .: "Manifolds all of whose geodesics are closed", Ergebisse Grenzgeb. Math., non. 93, Springer, Berlin, 1978. Funk, P .: "Über Flächen mit lauter geschlossenen geodätischen Linien". Mathematische Annalen 74 (1913), 278 – 300. Guillemin, V .: "The Radon transform on Zoll surfaces". Advances in Mathematics 22 (1976), 85 – 119. LeBrun, C .; Mason, L.: "Zoll manifolds and complex surfaces". Journal of Differential Geometry 61 (2002), no. 3, 453 – 535.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.