Delta-v (more known as "change in velocity"), symbolized as ∆v and pronounced delta-vee, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver. It is a scalar that has the units of speed. As used in this context, it is not the same as the physical change in velocity of said spacecraft.
A simple example might be the case of a conventional rocket-propelled spacecraft, which achieves thrust by burning fuel. Such a spacecraft's delta-v, then, would be the change in velocity that spacecraft can achieve by burning its entire fuel load.
Delta-v is produced by reaction engines, such as rocket engines, and is proportional to the thrust per unit mass and the burn time. It is used to determine the mass of propellant required for the given maneuver through the Tsiolkovsky rocket equation.
For multiple maneuvers, delta-v sums linearly.
For interplanetary missions, delta-v is often plotted on a porkchop plot, which displays the required mission delta-v as a function of launch date.
where
() is the instantaneous thrust at time .
() is the instantaneous mass at time .
In the absence of external forces:
where is the coordinate acceleration.
When thrust is applied in a constant direction (/ is constant) this simplifies to:
which is simply the magnitude of the change in velocity. However, this relation does not hold in the general case: if, for instance, a constant, unidirectional acceleration is reversed after (_1 − _0)/2 then the velocity difference is 0, but delta-v is the same as for the non-reversed thrust.
For rockets, "absence of external forces" is taken to mean the absence of gravity and atmospheric drag, as well as the absence of aerostatic back pressure on the nozzle, and hence the vacuum I_sp is used for calculating the vehicle's delta-v capacity via the rocket equation. In addition, the costs for atmospheric losses and gravity drag are added into the delta-v budget when dealing with launches from a planetary surface.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In the context of spaceflight, launch period is the collection of days and launch window is the time period on a given day during which a particular rocket must be launched in order to reach its intended target. If the rocket is not launched within a given window, it has to wait for the window on the next day of the period. Launch periods and launch windows are very dependent on both the rocket's capability and the orbit to which it is going. A launch period refers to the days that the rocket can launch to reach its intended orbit.
In astronautics, the Hohmann transfer orbit (ˈhoʊmən) is an orbital maneuver used to transfer a spacecraft between two orbits of different altitudes around a central body. Examples would be used for travel between low Earth orbit and the Moon, or another solar planet or asteroid. In the idealized case, the initial and target orbits are both circular and coplanar. The maneuver is accomplished by placing the craft into an elliptical transfer orbit that is tangential to both the initial and target orbits.
The Interplanetary Transport Network (ITN) is a collection of gravitationally determined pathways through the Solar System that require very little energy for an object to follow. The ITN makes particular use of Lagrange points as locations where trajectories through space can be redirected using little or no energy. These points have the peculiar property of allowing objects to orbit around them, despite lacking an object to orbit. While it would use little energy, transport along the network would take a long time.
Explores non-convex optimization in machine learning, covering gradient descent, trajectory analysis, and linear models.
Covers space mission design, spacecraft energy, orbits, and maneuvers, including gravity effects, tethers, and interplanetary trajectories.
The pivot-slide model (Shegelski and Lozowski) successfully predicts the slide and curl distances of a curling rock. However, in this model, there is no dependence of the curl distance on the initial velocity, because the ratio between the pivot to sliding ...
In this paper, we study local well-posedness and orbital stability of standing waves for a singularly perturbed one-dimensional nonlinear Klein-Gordon equation. We first establish local well-posedness of the Cauchy problem by a fixed point argument. Unlike ...
Historical centers of Europe and Croatia are often formed by unreinforced masonry building aggregates that developed as the layout of the city or village was densified. In these aggregates, adjacent buildings can share structural walls with an older and a ...