In the context of spaceflight, launch period is the collection of days and launch window is the time period on a given day during which a particular rocket must be launched in order to reach its intended target. If the rocket is not launched within a given window, it has to wait for the window on the next day of the period. Launch periods and launch windows are very dependent on both the rocket's capability and the orbit to which it is going.
A launch period refers to the days that the rocket can launch to reach its intended orbit. A mission could have a period of 365 days in a year, a few weeks each month, a few weeks every 26 months (e.g. Mars launch periods), or a short period time that won't be repeated.
A launch window indicates the time frame on a given day in the launch period that the rocket can launch to reach its intended orbit. This can be as short as a second (referred to as an instantaneous window) or even the entire day. For operational reasons, the window almost always is limited to no more than a few hours. The launch window can stretch over two calendar days (ex: start at 11:46 p.m. and end at 12:14 a.m.). Launch windows are sometimes but rarely exactly the same times each day.
Launch windows and launch periods are often used interchangeably in the public sphere, even within the same organization. However, these definitions are the ones used by NASA (and other space agencies) launch directors and trajectory analysts.
To go to another planet using the simple low-energy Hohmann transfer orbit, if eccentricity of orbits is not a factor, launch periods are periodic according to the synodic period; for example, in the case of Mars, the period is 780 days (2.1 years). In more complex cases, including the use of gravitational slingshots, launch periods are irregular. Sometimes rare opportunities arise, such as when Voyager 2 took advantage of a planetary alignment occurring once in 175 years to visit Jupiter, Saturn, Uranus, and Neptune. When such an opportunity is missed, another target may be selected.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The objective of the course is to present with different viewpoints, the lessons learned which lead to the decisions in the space exploration and their consequences today and for the decades to come.
This course is a "concepts" course. It introduces a variety of concepts in use in the design of a space mission, manned or unmanned, and in space operations. it is partly based on the practical space
Delta-v (more known as "change in velocity"), symbolized as ∆v and pronounced delta-vee, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver. It is a scalar that has the units of speed. As used in this context, it is not the same as the physical change in velocity of said spacecraft. A simple example might be the case of a conventional rocket-propelled spacecraft, which achieves thrust by burning fuel.
In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during the mission. As input to the Tsiolkovsky rocket equation, it determines how much propellant is required for a vehicle of given empty mass and propulsion system. Delta-v is a scalar quantity dependent only on the desired trajectory and not on the mass of the space vehicle.
In astronautics, the Hohmann transfer orbit (ˈhoʊmən) is an orbital maneuver used to transfer a spacecraft between two orbits of different altitudes around a central body. Examples would be used for travel between low Earth orbit and the Moon, or another solar planet or asteroid. In the idealized case, the initial and target orbits are both circular and coplanar. The maneuver is accomplished by placing the craft into an elliptical transfer orbit that is tangential to both the initial and target orbits.
Supercapacitors are new and powerful components for energy storage. Compared with batteries, the amount of energy they can store is low. But, as power sources they have the property to be re-loadable in a few seconds [1][2][3]. In that case, the needed ins ...
Background and Objective. Kinematic analysis of reaching movements is increasingly used to evaluate upper extremity function after cerebrovascular insults in humans and has also been applied to rodent models. Such analyses can require time-consuming frame- ...
Explores the lessons learned from diverse space exploration missions, covering topics such as spacecraft design, lunar sample return, and mission costs.
This paper reports on the effective use of capillary self-alignment for low-cost and time-efficient assembly of heterogeneous foil components into a smart electronic identification label. Particularly, we demonstrate the accurate (better than 50 μm) alignm ...