In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the universe does not expand at a constant rate; rather, the universe's expansion is accelerating. Understanding the universe's evolution requires knowledge of its starting conditions and composition. Before these observations, scientists thought that all forms of matter and energy in the universe would only cause the expansion to slow down over time. Measurements of the cosmic microwave background (CMB) suggest the universe began in a hot Big Bang, from which general relativity explains its evolution and the subsequent large-scale motion. Without introducing a new form of energy, there was no way to explain an accelerating expansion of the universe. Since the 1990s, dark energy has been the most accepted premise to account for the accelerated expansion. As of 2021, there are active areas of cosmology research to understand the fundamental nature of dark energy. Assuming that the lambda-CDM model of cosmology is correct, as of 2013, the best current measurements indicate that dark energy contributes 68% of the total energy in the present-day observable universe. The mass–energy of dark matter and ordinary (baryonic) matter contributes 26% and 5%, respectively, and other components such as neutrinos and photons contribute a very small amount. Dark energy's density is very low: 6e-10J/m3 (≈7e-30g/cm3), much less than the density of ordinary matter or dark matter within galaxies. However, it dominates the universe's mass–energy content because it is uniform across space.
Two proposed forms of dark energy are the cosmological constant (representing a constant energy density filling space homogeneously) and scalar fields (dynamic quantities having energy densities that vary in time and space) such as quintessence or moduli. Contributions from scalar fields that are constant in space are usually also included in the cosmological constant.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen
from the point of view of observations.
Ce cours décrit de façon simple les processus physiques qui expliquent l'univers dans lequel nous vivons. En couvrant une large gamme de sujets, le but du cours est aussi de donner un aperçu général d
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
The Annual Review of Astronomy and Astrophysics is an annual peer-reviewed scientific journal published by Annual Reviews. The co-editors are Ewine van Dishoeck and Robert C. Kennicutt. The journal reviews scientific literature pertaining to local and distant celestial entities throughout the observable universe, as well as cosmology, instrumentation, techniques, and the history of developments. It was established in 1963.
In astronomy and observational cosmology, the BOOMERanG experiment (Balloon Observations Of Millimetric Extragalactic Radiation And Geophysics) was an experiment which measured the cosmic microwave background radiation of a part of the sky during three sub-orbital (high-altitude) balloon flights. It was the first experiment to make large, high-fidelity images of the CMB temperature anisotropies, and is best known for the discovery in 2000 that the geometry of the universe is close to flat, with similar results from the competing MAXIMA experiment.
The Friedmann equations are a set of equations in physical cosmology that govern the expansion of space in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedmann in 1922 from Einstein's field equations of gravitation for the Friedmann–Lemaître–Robertson–Walker metric and a perfect fluid with a given mass density ρ and pressure p. The equations for negative spatial curvature were given by Friedmann in 1924.
Explores the historical evolution of cosmology, covering key concepts and scientific revolutions in the field.
Explores luminosity distance, the Einstein field equation, Stephen Hawking's contributions, and the cosmological principle, among other cosmological concepts.
Explores the effects of COVID-19 on observatories, focusing on ESO and JWST.
Cluster-scale strong lensing is a powerful tool for exploring the properties of dark matter and constraining cosmological models. However, due to the complex parameter space, pixelized strong lens modelling in galaxy clusters is computationally expensive, ...
Oxford Univ Press2024
, , , , , , , ,
This work considers which higher order modeling e ffects on the cosmic shear angular power spectra must be taken into account for Euclid. We identified the relevant terms and quantified their individual and cumulative impact on the cosmological parameter i ...
Dwarf galaxies in groups of galaxies provide excellent test cases for models of structure formation. This led to a so-called small-scale crisis, including the famous missing-satellites and too-big-to-fail problems. It was suggested that these two problems ...