Ferrocerium (also known in Europe as Auermetall) is a synthetic pyrophoric alloy of mischmetal (cerium, lanthanum, neodymium, other trace lanthanides and some iron – about 95% lanthanides and 5% iron) hardened by blending in oxides of iron and/or magnesium. When struck with a harder material, the mixture produces hot sparks that can reach temperatures of when rapidly oxidized by the process of striking the rod. Striking both scrapes fragments off, exposing them to the oxygen in the air, and easily ignites them by friction heat due to cerium's remarkably low ignition temperature of between .
Its easy flammability gives ferrocerium many commercial applications, such as the ignition source for lighters, strikers for gas welding and cutting torches, deoxidization in metallurgy, and ferrocerium rods. Because of ferrocerium's ability to ignite in adverse conditions, rods of ferrocerium (also called ferro rods, spark rods, and flint-spark-lighters) are commonly used as an emergency fire lighting device in survival kits. The ferrocerium is referred to as a "flint" in this case despite being dissimilar to natural flint as both are used in conjunction for fire lighting, albeit with opposite mechanical operation.
Mischmetal and Carl Auer von Welsbach
Ferrocerium alloy was invented in 1903 by the Austrian chemist Carl Auer von Welsbach. It takes its name from its two primary components: iron (from ferrum), and the rare-earth element cerium, which is the most prevalent of the lanthanides in the mixture. Except for the extra iron and magnesium oxides added to harden it, the mixture is approximately the combination found naturally in tailings from thorium mining, which Auer von Welsbach was investigating. The pyrophoric effect is dependent on the brittleness of the alloy and its low autoignition temperature.
In Auer von Welsbach's first alloy, 30% iron (ferrum) was added to purified cerium, hence the name "ferro-cerium". Two subsequent Auermetalls were developed: the second also included lanthanum to produce brighter sparks, and the third added other heavy metals.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Carl Auer von Welsbach (1 September 1858 – 4 August 1929), who received the Austrian noble title of Freiherr Auer von Welsbach in 1901, was an Austrian scientist and inventor, who separated didymium into the elements neodymium and praseodymium in 1885. He was also one of three scientists to independently discover the element lutetium (which he named cassiopeium), separating it from ytterbium in 1907, setting off the longest priority dispute in the history of chemistry.
A fire striker is a piece of carbon steel from which sparks are struck by the sharp edge of flint, chert or similar rock. It is a specific tool used in fire making. Before the invention of matches, percussion fire making was often used to start fires. Before the advent of steel, a variety of iron pyrite or marcasite was used with flint and other stones to produce a high-temperature spark that could be used to create fire. There are indications that the Iceman, also known as Ötzi, may have used iron pyrite to make fire.
Cerium is a chemical element with the symbol Ce and atomic number 58. Cerium is a soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it often shows the oxidation state of +3 characteristic of the series, it also has a stable +4 state that does not oxidize water. It is also considered one of the rare-earth elements. Cerium has no known biological role in humans but is not particularly toxic, except with intense or continued exposure.
Explores thermal insulation, heat balance, and energy efficiency in buildings, emphasizing strategies for reducing energy consumption and combating global warming.
This work demonstrates the rational design of a dedicated hydrolysis catalyst for application in the selective catalytic reduction (SCR) of NOx. Modification of titania by lanthanum prior to gold deposition entailed highly improved catalytic activities for ...