Concept

Pierre à briquet

Résumé
Ferrocerium (also known in Europe as Auermetall) is a synthetic pyrophoric alloy of mischmetal (cerium, lanthanum, neodymium, other trace lanthanides and some iron – about 95% lanthanides and 5% iron) hardened by blending in oxides of iron and/or magnesium. When struck with a harder material, the mixture produces hot sparks that can reach temperatures of when rapidly oxidized by the process of striking the rod. Striking both scrapes fragments off, exposing them to the oxygen in the air, and easily ignites them by friction heat due to cerium's remarkably low ignition temperature of between . Its easy flammability gives ferrocerium many commercial applications, such as the ignition source for lighters, strikers for gas welding and cutting torches, deoxidization in metallurgy, and ferrocerium rods. Because of ferrocerium's ability to ignite in adverse conditions, rods of ferrocerium (also called ferro rods, spark rods, and flint-spark-lighters) are commonly used as an emergency fire lighting device in survival kits. The ferrocerium is referred to as a "flint" in this case despite being dissimilar to natural flint as both are used in conjunction for fire lighting, albeit with opposite mechanical operation. Mischmetal and Carl Auer von Welsbach Ferrocerium alloy was invented in 1903 by the Austrian chemist Carl Auer von Welsbach. It takes its name from its two primary components: iron (from ferrum), and the rare-earth element cerium, which is the most prevalent of the lanthanides in the mixture. Except for the extra iron and magnesium oxides added to harden it, the mixture is approximately the combination found naturally in tailings from thorium mining, which Auer von Welsbach was investigating. The pyrophoric effect is dependent on the brittleness of the alloy and its low autoignition temperature. In Auer von Welsbach's first alloy, 30% iron (ferrum) was added to purified cerium, hence the name "ferro-cerium". Two subsequent Auermetalls were developed: the second also included lanthanum to produce brighter sparks, and the third added other heavy metals.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.