Breast cancer classification divides breast cancer into categories according to different schemes criteria and serving a different purpose. The major categories are the histopathological type, the grade of the tumor, the stage of the tumor, and the expression of proteins and genes. As knowledge of cancer cell biology develops these classifications are updated.
The purpose of classification is to select the best treatment. The effectiveness of a specific treatment is demonstrated for a specific breast cancer (usually by randomized, controlled trials). That treatment may not be effective in a different breast cancer. Some breast cancers are aggressive and life-threatening, and must be treated with aggressive treatments that have major adverse effects. Other breast cancers are less aggressive and can be treated with less aggressive treatments, such as lumpectomy.
Treatment algorithms rely on breast cancer classification to define specific subgroups that are each treated according to the best evidence available. Classification aspects must be carefully tested and validated, such that confounding effects are minimized, making them either true prognostic factors, which estimate disease outcomes such as disease-free or overall survival in the absence of therapy, or true predictive factors, which estimate the likelihood of response or lack of response to a specific treatment.
Classification of breast cancer is usually, but not always, primarily based on the histological appearance of tissue in the tumor. A variant from this approach, defined on the basis of physical exam findings, is that inflammatory breast cancer (IBC), a form of ductal carcinoma or malignant cancer in the ducts, is distinguished from other carcinomas by the inflamed appearance of the affected breast, which correlates with increased cancer aggressivity.
Breast cancers can be classified by different schemata. Each of these aspects influences treatment response and prognosis. Description of a breast cancer would optimally include all of these classification aspects, as well as other findings, such as signs found on physical exam.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Male breast cancer (MBC) is a cancer in males that originates in their breasts. Males account for less than 1% of new breast cancers with about 20,000 new cases being diagnosed worldwide every year. Its incidence rates in males vs. females are, respectively, 0.4 and 66.7 per 100,000 person-years (person-years is the number of new cases divided by the product of the relevant population's size multiplied by the average number of years of observation, i.e. new cases ÷ [population × years]).
Adenocarcinoma (ˌædɪnoʊkɑːrsɪˈnoʊmə; plural adenocarcinomas or adenocarcinomata ˌædɪnoʊkɑːrsɪˈnoʊmətə; AC) is a type of cancerous tumor that can occur in several parts of the body. It is defined as neoplasia of epithelial tissue that has glandular origin, glandular characteristics, or both. Adenocarcinomas are part of the larger grouping of carcinomas, but are also sometimes called by more precise terms omitting the word, where these exist.
Breast cancer is cancer that develops from breast tissue. Signs of breast cancer may include a lump in the breast, a change in breast shape, dimpling of the skin, milk rejection, fluid coming from the nipple, a newly inverted nipple, or a red or scaly patch of skin. In those with distant spread of the disease, there may be bone pain, swollen lymph nodes, shortness of breath, or yellow skin.
This course provides a comprehensive overview of the biology of cancer, illustrating the mechanisms that cancer cells use to grow and disseminate at the expense of normal tissues and organs.
Closely interfacing with bioengineering and medicine, this course provides foundational concepts in applying small-molecule chemical toolsets to probe the functions of living systems at the mechanisti
The course covers in detail molecular mechanisms of cancer development with emphasis on cell cycle control, genome stability, oncogenes and tumor suppressor genes.
Explores metabolic signaling, glycolysis, cancer switches, and a case study on breast tumor aggressiveness through integrated proteomics and metabolomics.
Explores comprehensive genomic characterization, mutual exclusivity, and cancer evolution.
Explores tools for monitoring cell energy status and a case study on breast tumor aggressiveness.
Steroid hormone receptors (HRs) are ligand-activated transcription factors that play a pivotal role in breast development and carcinogenesis. It is well established that estrogen receptor (ER) signaling is a major proliferative driver in estrogen receptor ...
EPFL2024
,
Lobular carcinoma represent the most common special histological subtype of breast cancer, with the majority classed as hormone receptor positive. Rates of invasive lobular carcinoma in postmenopausal women have been seen to increase globally, while other ...
Endocrine Soc2024
Breast cancer is a significant global health burden, causing a substantial number of deaths. Systemic metastatic tumour cell dissemination is a major cause of poor outcomes. Understanding the mechanisms underlying metastasis is crucial for effective interv ...