The Maya numeral system was the system to represent numbers and calendar dates in the Maya civilization. It was a vigesimal (base-20) positional numeral system. The numerals are made up of three symbols: zero (a shell), one (a dot) and five (a bar). For example, thirteen is written as three dots in a horizontal row above two horizontal bars; sometimes it is also written as three vertical dots to the left of two vertical bars. With these three symbols, each of the twenty vigesimal digits could be written.
Numbers after 19 were written vertically in powers of twenty. The Maya used powers of twenty, just as the Hindu–Arabic numeral system uses powers of ten. For example, thirty-three would be written as one dot, above three dots atop two bars. The first dot represents "one twenty" or "1×20", which is added to three dots and two bars, or thirteen. Therefore, (1×20) + 13 = 33. Upon reaching 202 or 400, another row is started (203 or 8000, then 204 or 160,000, and so on). The number 429 would be written as one dot above one dot above four dots and a bar, or (1×202) + (1×201) + 9 = 429.
Other than the bar and dot notation, Maya numerals were sometimes illustrated by face type glyphs or pictures. The face glyph for a number represents the deity associated with the number. These face number glyphs were rarely used, and are mostly seen on some of the most elaborate monumental carvings.
Adding and subtracting numbers below 20 using Maya numerals is very simple.
Addition is performed by combining the numeric symbols at each level:
If five or more dots result from the combination, five dots are removed and replaced by a bar. If four or more bars result, four bars are removed and a dot is added to the next higher row. This also means that the value of 1 bar is 5.
Similarly with subtraction, remove the elements of the subtrahend symbol from the minuend symbol:
If there are not enough dots in a minuend position, a bar is replaced by five dots. If there are not enough bars, a dot is removed from the next higher minuend symbol in the column and four bars are added to the minuend symbol which is being worked on.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
Related publications (4)
Explores closed loop systems, simple regulators, transfer functions, and controller adjustments for system performance improvement.
Explores Church numerals and encoding conditionals in lambda calculus.
0 (zero) is a number representing an empty quantity. As a number, 0 fulfills a central role in mathematics as the additive identity of the integers, real numbers, and other algebraic structures. In place-value notation such as decimal, 0 also serves as a numerical digit to indicate that that position's power of 10 is not multiplied by anything or added to the resulting number. This concept appears to have been difficult to discover. Common names for the number 0 in English are zero, nought, naught (nɔːt), nil.
Positional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which the contribution of a digit to the value of a number is the value of the digit multiplied by a factor determined by the position of the digit. In early numeral systems, such as Roman numerals, a digit has only one value: I means one, X means ten and C a hundred (however, the value may be negated if placed before another digit).
A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can be represented by symbols, called numerals; for example, "5" is a numeral that represents the number five. As only a relatively small number of symbols can be memorized, basic numerals are commonly organized in a numeral system, which is an organized way to represent any number.
In this dissertation, we study visual analysis methods for complex ancient Maya writings. The unit sign of a Maya text is called glyph, and may have either semantic or syllabic significance. There are over 800 identified glyph categories, and over 1400 var ...
Background Accelerated epigenetic ageing can occur in untreated HIV infection and is partially reversible with effective antiretroviral therapy (ART). We aimed to make a long-term comparison of epigenetic ageing dynamics in people with HIV during untreated ...
Droughts in pre-Columbian Mesoamerica caused significant societal disruptions during the Late Classic and Post-Classic Periods. While the primary causes of these droughts are still debated, it has been speculated that they may be linked to extensive defore ...