In mathematics, symbolic dynamics is the practice of modeling a topological or smooth dynamical system by a discrete space consisting of infinite sequences of abstract symbols, each of which corresponds to a state of the system, with the dynamics (evolution) given by the shift operator. Formally, a Markov partition is used to provide a finite cover for the smooth system; each set of the cover is associated with a single symbol, and the sequences of symbols result as a trajectory of the system moves from one covering set to another.
The idea goes back to Jacques Hadamard's 1898 paper on the geodesics on surfaces of negative curvature. It was applied by Marston Morse in 1921 to the construction of a nonperiodic recurrent geodesic. Related work was done by Emil Artin in 1924 (for the system now called Artin billiard), Pekka Myrberg, Paul Koebe, Jakob Nielsen, G. A. Hedlund.
The first formal treatment was developed by Morse and Hedlund in their 1938 paper. George Birkhoff, Norman Levinson and the pair Mary Cartwright and J. E. Littlewood have applied similar methods to qualitative analysis of nonautonomous second order differential equations.
Claude Shannon used symbolic sequences and shifts of finite type in his 1948 paper A mathematical theory of communication that gave birth to information theory.
During the late 1960s the method of symbolic dynamics was developed to hyperbolic toral automorphisms by Roy Adler and Benjamin Weiss, and to Anosov diffeomorphisms by Yakov Sinai who used the symbolic model to construct Gibbs measures. In the early 1970s the theory was extended to Anosov flows by Marina Ratner, and to Axiom A diffeomorphisms and flows by Rufus Bowen.
A spectacular application of the methods of symbolic dynamics is Sharkovskii's theorem about periodic orbits of a continuous map of an interval into itself (1964).
Concepts such as heteroclinic orbits and homoclinic orbits have a particularly simple representation in symbolic dynamics.
Itinerary of point with respect to the partition is a sequence of symbols.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, subshifts of finite type are used to model dynamical systems, and in particular are the objects of study in symbolic dynamics and ergodic theory. They also describe the set of all possible sequences executed by a finite state machine. The most widely studied shift spaces are the subshifts of finite type. Let V be a finite set of n symbols (alphabet). Let X denote the set V^\Z of all bi-infinite sequences of elements of V together with the shift operator T. We endow V with the discrete topology and X with the product topology.
In dynamical systems theory, the baker's map is a chaotic map from the unit square into itself. It is named after a kneading operation that bakers apply to dough: the dough is cut in half, and the two halves are stacked on one another, and compressed. The baker's map can be understood as the bilateral shift operator of a bi-infinite two-state lattice model. The baker's map is topologically conjugate to the horseshoe map. In physics, a chain of coupled baker's maps can be used to model deterministic diffusion.
Dynamical systems theory is an area of mathematics used to describe the behavior of complex dynamical systems, usually by employing differential equations or difference equations. When differential equations are employed, the theory is called continuous dynamical systems. From a physical point of view, continuous dynamical systems is a generalization of classical mechanics, a generalization where the equations of motion are postulated directly and are not constrained to be Euler–Lagrange equations of a least action principle.
Katznelson's Question is a long-standing open question concerning recurrence in topological dynamics with strong historical and mathematical ties to open problems in combinatorics and harmonic analysis. In this article, we give a positive answer to Katznel ...
A set R⊂N is called rational if it is well approximable by finite unions of arithmetic progressions, meaning that for every \unicode[STIX]x1D716>0 there exists a set B=⋃i=1raiN+bi, where $a_{1},\ldots ,a_ ...
Systems out of equilibrium exhibit a net production of entropy. We study the dynamics of a stochastic system represented by a Master equation (ME) that can be modeled by a Fokker-Planck equation in a coarse-grained, mesoscopic description. We show that the ...