Scrubber systems (e.g. chemical scrubbers, gas scrubbers) are a diverse group of air pollution control devices that can be used to remove some particulates and/or gases from industrial exhaust streams. An early application of a carbon dioxide scrubber was in the submarine the Ictíneo I, in 1859; a role for which they continue to be used today. Traditionally, the term "scrubber" has referred to pollution control devices that use liquid to wash unwanted pollutants from a gas stream. Recently, the term has also been used to describe systems that inject a dry reagent or slurry into a dirty exhaust stream to "wash out" acid gases. Scrubbers are one of the primary devices that control gaseous emissions, especially acid gases. Scrubbers can also be used for heat recovery from hot gases by flue-gas condensation. They are also used for the high flows in solar, PV, or LED processes.
There are several methods to remove toxic or corrosive compounds from exhaust gas and neutralize it.
Combustion is sometimes the cause of harmful exhausts, but, in many cases, combustion may also be used for exhaust gas cleaning if the temperature is high enough and enough oxygen is available.
The exhaust gases of combustion may contain substances considered harmful to the environment, and the scrubber may remove or neutralize those.
A wet scrubber is used for cleaning air, fuel gas or other gases of various pollutants and dust particles. Wet scrubbing works via the contact of target compounds or particulate matter with the scrubbing solution. Water is the most common solvent used to remove inorganic contaminants, particularly for dust, but solutions of reagents that specifically target certain compounds may also be used.
Process exhaust gas can also contain water-soluble toxic and/or corrosive gases like hydrochloric acid (HCl) or ammonia (NH3). These can be removed very well by a wet scrubber.
Removal efficiency of pollutants is improved by increasing residence time in the scrubber or by the increase of surface area of the scrubber solution by the use of a spray nozzle, packed towers or an aspirator.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Air pollution is the contamination of air due to the presence of substances in the atmosphere that are harmful to the health of humans and other living beings, or cause damage to the climate or to materials. It is also the contamination of indoor or outdoor surrounding either by chemical activities, physical or biological agents that alters the natural features of the atmosphere. There are many different types of air pollutants, such as gases (including ammonia, carbon monoxide, sulfur dioxide, nitrous oxides, methane and chlorofluorocarbons), particulates (both organic and inorganic), and biological molecules.
Flue-gas desulfurization (FGD) is a set of technologies used to remove sulfur dioxide () from exhaust flue gases of fossil-fuel power plants, and from the emissions of other sulfur oxide emitting processes such as waste incineration, petroleum refineries, cement and lime kilns. Since stringent environmental regulations limiting emissions have been enacted in many countries, is being removed from flue gases by a variety of methods.
Flue gas is the gas exiting to the atmosphere via a flue, which is a pipe or channel for conveying exhaust gases from a fireplace, oven, furnace, boiler or steam generator. Quite often, the flue gas refers to the combustion exhaust gas produced at power plants. Its composition depends on what is being burned, but it will usually consist of mostly nitrogen (typically more than two-thirds) derived from the combustion of air, carbon dioxide (), and water vapor as well as excess oxygen (also derived from the combustion air).
The course is an introduction to heterogeneous catalysis for environmental protection and energy production. It focusses on catalytic exhaust gas cleaning as well as catalytic systems relevant for gas
Near-surface mercury and ozone depletion events occur in the lowest part of the atmosphere during Arctic spring. Mercury depletion is the first step in a process that transforms long-lived elemental mercury to more reactive forms within the Arctic that are ...
Metal-organic Frameworks (MOFs) are a class of crystalline porous materials with exceptionally high surface area, chemical tunability and stability. Due to alarming CO2 emission and global concern, research is focused on developing porous materials like MO ...
This work evaluates the aerosol oxidative potential (OP) and its changes from modified air pollution emissions during the COVID-19 lockdown period in 2020, with the intent of elucidating the contribution of aerosol sources and related components to aerosol ...