Concept

Courant–Friedrichs–Lewy condition

Summary
In mathematics, the convergence condition by Courant–Friedrichs–Lewy is a necessary condition for convergence while solving certain partial differential equations (usually hyperbolic PDEs) numerically. It arises in the numerical analysis of explicit time integration schemes, when these are used for the numerical solution. As a consequence, the time step must be less than a certain time in many explicit time-marching computer simulations, otherwise the simulation produces incorrect results. The condition is named after Richard Courant, Kurt Friedrichs, and Hans Lewy who described it in their 1928 paper. The principle behind the condition is that, for example, if a wave is moving across a discrete spatial grid and we want to compute its amplitude at discrete time steps of equal duration, then this duration must be less than the time for the wave to travel to adjacent grid points. As a corollary, when the grid point separation is reduced, the upper limit for the time step also decreases. In essence, the numerical domain of dependence of any point in space and time (as determined by initial conditions and the parameters of the approximation scheme) must include the analytical domain of dependence (wherein the initial conditions have an effect on the exact value of the solution at that point) to assure that the scheme can access the information required to form the solution. To make a reasonably formally precise statement of the condition, it is necessary to define the following quantities: Spatial coordinate: one of the coordinates of the physical space in which the problem is posed Spatial dimension of the problem: the number of spatial dimensions, i.e., the number of spatial coordinates of the physical space where the problem is posed. Typical values are , and . Time: the coordinate, acting as a parameter, which describes the evolution of the system, distinct from the spatial coordinates The spatial coordinates and the time are discrete-valued independent variables, which are placed at regular distances called the interval length and the time step, respectively.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.