Organobromine chemistry is the study of the synthesis and properties of organobromine compounds, also called organobromides, which are organic compounds that contain carbon bonded to bromine. The most pervasive is the naturally produced bromomethane. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon–bromine bond is electrophilic, i.e. alkyl bromides are alkylating agents. Carbon–halogen bond strengths, or bond dissociation energies are of 115, 83.7, 72.1, and 57.6 kcal/mol for bonded to fluorine, chlorine, bromine, or iodine, respectively. The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost. The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution. Alkenes reliably add bromine without catalysis to give the vicinal dibromides: RCH=CH2 + Br2 → RCHBrCH2Br Aromatic compounds undergo bromination simultaneously with evolution of hydrogen bromide. Catalysts such as AlBr3 or FeBr3 are needed for the reaction to happen on aromatic rings. Chlorine-based catalysts (FeCl3, AlCl3) could be used, but yield would drop slightly as dihalogens(BrCl) could form. The reaction details following the usual patterns of electrophilic aromatic substitution: RC6H5 + Br2 → RC6H4Br + HBr A prominent application of this reaction is the production of tetrabromobisphenol-A from bisphenol-A.
Qian Wang, Jieping Zhu, Jing Gong
Julia Schmale, Ivo Fabio Beck, Hélène Paule Angot, Jenny Thomas