Concept

Quantum pseudo-telepathy

Summary
Quantum pseudo-telepathy is the fact that in certain Bayesian games with asymmetric information, players who have access to a shared physical system in an entangled quantum state, and who are able to execute strategies that are contingent upon measurements performed on the entangled physical system, are able to achieve higher expected payoffs in equilibrium than can be achieved in any mixed-strategy Nash equilibrium of the same game by players without access to the entangled quantum system. In their 1999 paper, Gilles Brassard, Richard Cleve and Alain Tapp demonstrated that quantum pseudo-telepathy allows players in some games to achieve outcomes that would otherwise only be possible if participants were allowed to communicate during the game. This phenomenon came to be referred to as quantum pseudo-telepathy, with the prefix pseudo referring to the fact that quantum pseudo-telepathy does not involve the exchange of information between any parties. Instead, quantum pseudo-telepathy removes the need for parties to exchange information in some circumstances. By removing the need to engage in communication to achieve mutually advantageous outcomes in some circumstances, quantum pseudo-telepathy could be useful if some participants in a game were separated by many light years, meaning that communication between them would take many years. This would be an example of a macroscopic implication of quantum non-locality. Quantum pseudo-telepathy is generally used as a thought experiment to demonstrate the non-local characteristics of quantum mechanics. However, quantum pseudo-telepathy is a real-world phenomenon which can be verified experimentally. It is thus an especially striking example of an experimental confirmation of Bell inequality violations. A Bayesian game is a game in which both players have imperfect information regarding the value of certain parameters. In a Bayesian game it is sometimes the case that for at least some players, the highest expected payoff achievable in a Nash equilibrium is lower than that which could have been achieved had there not have been imperfect information.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.