Quantum pseudo-telepathy is the fact that in certain Bayesian games with asymmetric information, players who have access to a shared physical system in an entangled quantum state, and who are able to execute strategies that are contingent upon measurements performed on the entangled physical system, are able to achieve higher expected payoffs in equilibrium than can be achieved in any mixed-strategy Nash equilibrium of the same game by players without access to the entangled quantum system.
In their 1999 paper, Gilles Brassard, Richard Cleve and Alain Tapp demonstrated that quantum pseudo-telepathy allows players in some games to achieve outcomes that would otherwise only be possible if participants were allowed to communicate during the game.
This phenomenon came to be referred to as quantum pseudo-telepathy, with the prefix pseudo referring to the fact that quantum pseudo-telepathy does not involve the exchange of information between any parties. Instead, quantum pseudo-telepathy removes the need for parties to exchange information in some circumstances.
By removing the need to engage in communication to achieve mutually advantageous outcomes in some circumstances, quantum pseudo-telepathy could be useful if some participants in a game were separated by many light years, meaning that communication between them would take many years. This would be an example of a macroscopic implication of quantum non-locality.
Quantum pseudo-telepathy is generally used as a thought experiment to demonstrate the non-local characteristics of quantum mechanics. However, quantum pseudo-telepathy is a real-world phenomenon which can be verified experimentally. It is thus an especially striking example of an experimental confirmation of Bell inequality violations.
A Bayesian game is a game in which both players have imperfect information regarding the value of certain parameters. In a Bayesian game it is sometimes the case that for at least some players, the highest expected payoff achievable in a Nash equilibrium is lower than that which could have been achieved had there not have been imperfect information.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
After introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
This course will give an overview of the experimental state of the art of quantum technology for Quantum Information Processing (QIP). We will explore some of the most promising approaches for realizi
In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a quantum mechanical prediction for the system represented by the state. Knowledge of the quantum state together with the quantum mechanical rules for the system's evolution in time exhausts all that can be known about a quantum system. Quantum states may be defined in different ways for different kinds of systems or problems.
A Bell test, also known as Bell inequality test or Bell experiment, is a real-world physics experiment designed to test the theory of quantum mechanics in relation to Albert Einstein's concept of local realism. Named for John Stewart Bell, the experiments test whether or not the real world satisfies local realism, which requires the presence of some additional local variables (called "hidden" because they are not a feature of quantum theory) to explain the behavior of particles like photons and electrons.
In theoretical physics, quantum nonlocality refers to the phenomenon by which the measurement statistics of a multipartite quantum system do not admit an interpretation in terms of a local realistic theory. Quantum nonlocality has been experimentally verified under different physical assumptions. Any physical theory that aims at superseding or replacing quantum theory should account for such experiments and therefore cannot fulfill local realism; quantum nonlocality is a property of the universe that is independent of our description of nature.
In this thesis, we give new protocols that offer a quantum advantage for problems in ML, Physics, and Finance.Quantum mechanics gives predictions that are inconsistent with local realism.The experiment proving this fact (Bell, 1964) gives a quantum protoco ...
EPFL2024
With the looming threat of large-scale quantum computers, a fair portion of recent cryptographic research has focused on examining cryptographic primitives from the perspective of a quantum adversary. Shor's 1994 result revealed that quantum computers can ...
A leading nonlinear effect in magnonics is the interaction that splits a high-frequency magnon into two low-frequency magnons with conserved linear momentum. Here, we report experimental observation of nonlocal three-magnon scattering between spatially sep ...