The magnetopause is the abrupt boundary between a magnetosphere and the surrounding plasma. For planetary science, the magnetopause is the boundary between the planet's magnetic field and the solar wind. The location of the magnetopause is determined by the balance between the pressure of the dynamic planetary magnetic field and the dynamic pressure of the solar wind. As the solar wind pressure increases and decreases, the magnetopause moves inward and outward in response. Waves (ripples and flapping motion) along the magnetopause move in the direction of the solar wind flow in response to small-scale variations in the solar wind pressure and to Kelvin–Helmholtz instability.
The solar wind is supersonic and passes through a bow shock where the direction of flow is changed so that most of the solar wind plasma is deflected to either side of the magnetopause, much like water is deflected before the bow of a ship. The zone of shocked solar wind plasma is the magnetosheath. At Earth and all the other planets with intrinsic magnetic fields, some solar wind plasma succeeds in entering and becoming trapped within the magnetosphere. At Earth, the solar wind plasma which enters the magnetosphere forms the plasma sheet. The amount of solar wind plasma and energy that enters the magnetosphere is regulated by the orientation of the interplanetary magnetic field, which is embedded in the solar wind.
The Sun and other stars with magnetic fields and stellar winds have a solar magnetopause or heliopause where the stellar environment is bounded by the interstellar environment.
Prior to the age of space exploration, interplanetary space was considered to be a vacuum. The coincidence of the first observation of a solar flare and the geomagnetic storm of 1859 was evidence that plasma was ejected from the Sun during the flare event. Chapman and Ferraro proposed that a plasma was emitted by the Sun in a burst as part of a flare event which disturbed the planet's magnetic field in a manner known as a geomagnetic storm.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5keV. The composition of the solar wind plasma also includes a mixture of materials found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as C, N, O, Ne, Mg, Si, S, and Fe. There are also rarer traces of some other nuclei and isotopes such as P, Ti, Cr, 54Fe and 56Fe, and 58Ni, 60Ni, and 62Ni.
In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior dynamo. In the space environment close to a planetary body, the magnetic field resembles a magnetic dipole. Farther out, field lines can be significantly distorted by the flow of electrically conducting plasma, as emitted from the Sun (i.e., the solar wind) or a nearby star.
Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magnetic field is generated by electric currents due to the motion of convection currents of a mixture of molten iron and nickel in Earth's outer core: these convection currents are caused by heat escaping from the core, a natural process called a geodynamo.
Explores the complexity of boundary plasma in fusion energy research, focusing on experimental techniques and simulations to understand plasma dynamics and improve fusion reactor design.
Plasma turbulence plays a fundamental role in determining the performances of magnetic confinement fusion devices, such as tokamaks. Advances in computer science, combined with the development of efficient physical models, have significantly improved our u ...
This paper presents DIV1D, a new 1D dynamic physics-based model of the divertor plasma under development to study and control the dynamics of detached plasmas. An innovative feature of DIV1D is that it mimics cross-field transport using an effective flux e ...
A projection-based reduced order model (ROM) based on the Fourier collocation method is proposed for compressible flows. The incorporation of localized artificial viscosity model and filtering is pursued to enhance the robustness and accuracy of the ROM fo ...