Lalande 21185 (also known as BD+36 2147, Gliese 411, and HD 95735) is a star in the south of Ursa Major. It is the apparent brightest red dwarf in the northern hemisphere. Despite this, and being relatively close by, it is (as are all red dwarfs) very dim, being only magnitude 7.5 in visible light and thus too faint to be seen with the unaided eye. The star is visible through a small telescope or binoculars.
At approximately away it is one of the stars nearest to the Solar System; only the Alpha Centauri system, Barnard's Star, and Wolf 359 and the brown dwarfs Luhman 16 and WISE 0855−0714 are known to be closer. Because of its proximity it is a frequent subject for astronomical surveys and other research and thus is known by numerous other designations, most commonly Gliese 411 and HD 95735. In approximately 19,900 years it will be at its closest, about 4.65 ly (1.43 pc) from the Sun, just over half its present distance.
Lalande 21185 has two known exoplanets and one candidate exoplanet, making it the second closest planetary system to the Solar System.
The celestial coordinates of Lalande 21185 were first published in 1801 by French astronomer Jérôme Lalande of the Paris Observatory in the star catalog Histoire céleste française. The catalog sequence numbers for majority of the observed stars, including this one, were introduced in its 1847 edition by Francis Baily. Today this star is one of just a few that are still commonly referred to by their Lalande catalog number.
In May 1857, Friedrich Wilhelm Argelander discovered the high proper motion of the star. It was sometimes called "Argelander's second star". (The "first Argelander's star" is Groombridge 1830, whose high proper motion was discovered by Argelander earlier—in 1842).
Friedrich August Theodor Winnecke is reported to have made the first measurement of the star's parallax of 0.511 arc seconds in 1857–58 and thus first identifying Lalande 21185 as the second-closest-known star to the Sun, after the Alpha Centauri system.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Context. Among the different observational techniques used to select high-redshift galaxies, the hydrogen recombination line Lyman-alpha (Ly alpha) is of particular interest because it gives access to the measurement of cosmological quantities such as the ...
A planetary system is a set of gravitationally bound non-stellar objects in or out of orbit around a star or star system. Generally speaking, systems with one or more planets constitute a planetary system, although such systems may also consist of bodies such as dwarf planets, asteroids, natural satellites, meteoroids, comets, planetesimals and circumstellar disks. The Sun together with the planetary system revolving around it, including Earth, forms the Solar System.
In astronomy and astrobiology, the circumstellar habitable zone (CHZ), or simply the habitable zone, is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. The bounds of the CHZ are based on Earth's position in the Solar System and the amount of radiant energy it receives from the Sun. Due to the importance of liquid water to Earth's biosphere, the nature of the CHZ and the objects within it may be instrumental in determining the scope and distribution of planets capable of supporting Earth-like extraterrestrial life and intelligence.
Barnard's Star is a small red dwarf star in the constellation of Ophiuchus. At a distance of from Earth, it is the fourth-nearest-known individual star to the Sun after the three components of the Alpha Centauri system, and the closest star in the northern celestial hemisphere. Its stellar mass is about 16% of the Sun's, and it has 19% of the Sun's diameter. Despite its proximity, the star has a dim apparent visual magnitude of +9.5 and is invisible to the unaided eye; it is much brighter in the infrared than in visible light.
Magnetars(1) are young neutron stars with very strong magnetic fields of the order of 10(14)-10(15) G. They are detected in our Galaxy either as soft gamma-ray repeaters or anomalous X-ray pulsars. Soft gamma-ray repeaters are a rare type of gamma-ray tran ...
Gravitationally lensed quasars can be used as powerful cosmological and astrophysical probes. We can (i) infer the Hubble constant H-0 based on the so-called time-delay technique, (ii) unveil substructures along the line-of-sight toward distant galaxies, a ...