In set theory, the Baire space is the set of all infinite sequences of natural numbers with a certain topology. This space is commonly used in descriptive set theory, to the extent that its elements are often called "reals". It is denoted NN, ωω, by the symbol or also ωω, not to be confused with the countable ordinal obtained by ordinal exponentiation.
The Baire space is defined to be the Cartesian product of countably infinitely many copies of the set of natural numbers, and is given the product topology (where each copy of the set of natural numbers is given the discrete topology). The Baire space is often represented using the tree of finite sequences of natural numbers.
The Baire space can be contrasted with Cantor space, the set of infinite sequences of binary digits.
Countable set
The product topology used to define the Baire space can be described more concretely in terms of trees. The basic open sets of the product topology are cylinder sets, here characterized as:
If any finite set of natural number coordinates I={i} is selected, and for each i a particular natural number value vi is selected, then the set of all infinite sequences of natural numbers that have value vi at position i is a basic open set. Every open set is a countable union of a collection of these.
Using more formal notation, one can define the individual cylinders as
for a fixed integer location n and integer value v. The cylinders are then the generators for the cylinder sets: the cylinder sets then consist of all intersections of a finite number of cylinders. That is, given any finite set of natural number coordinates and corresponding natural number values for each , one considers the intersection of cylinders
This intersection is called a cylinder set, and the set of all such cylinder sets provides a basis for the product topology. Every open set is a countable union of such cylinder sets.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to other areas of mathematics such as functional analysis, ergodic theory, the study of operator algebras and group actions, and mathematical logic. Descriptive set theory begins with the study of Polish spaces and their Borel sets.
In general topology, a subset of a topological space is perfect if it is closed and has no isolated points. Equivalently: the set is perfect if , where denotes the set of all limit points of , also known as the derived set of . In a perfect set, every point can be approximated arbitrarily well by other points from the set: given any point of and any neighborhood of the point, there is another point of that lies within the neighborhood. Furthermore, any point of the space that can be so approximated by points of belongs to .
The intersection graph of a collection C of sets is the graph on the vertex set C, in which C-1 . C-2 is an element of C are joined by an edge if and only if C-1 boolean AND C-2 not equal empty set. Erdos conjectured that the chromatic number of triangle-f ...