Concept

Noncentral distribution

Noncentral distributions are families of probability distributions that are related to other "central" families of distributions by means of a noncentrality parameter. Whereas the central distribution describes how a test statistic is distributed when the difference tested is null, noncentral distributions describe the distribution of a test statistic when the null is false (so the alternative hypothesis is true). This leads to their use in calculating statistical power. If the noncentrality parameter of a distribution is zero, the distribution is identical to a distribution in the central family. For example, the Student's t-distribution is the central family of distributions for the noncentral t-distribution family. Noncentrality parameters are used in the following distributions: Noncentral t-distribution Noncentral chi-squared distribution Noncentral chi-distribution Noncentral F-distribution Noncentral beta distribution In general, noncentrality parameters occur in distributions that are transformations of a normal distribution. The "central" versions are derived from normal distributions that have a mean of zero; the noncentral versions generalize to arbitrary means. For example, the standard (central) chi-squared distribution is the distribution of a sum of squared independent standard normal distributions, i.e., normal distributions with mean 0, variance 1. The noncentral chi-squared distribution generalizes this to normal distributions with arbitrary mean and variance. Each of these distributions has a single noncentrality parameter. However, there are extended versions of these distributions which have two noncentrality parameters: the doubly noncentral beta distribution, the doubly noncentral F distribution and the doubly noncentral t distribution. These types of distributions occur for distributions that are defined as the quotient of two independent distributions. When both source distributions are central (either with a zero mean or a zero noncentrality parameter, depending on the type of distribution), the result is a central distribution.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.