In probability theory and statistics, the chi-squared distribution (also chi-square or -distribution) with degrees of freedom is the distribution of a sum of the squares of independent standard normal random variables. The chi-squared distribution is a special case of the gamma distribution and is one of the most widely used probability distributions in inferential statistics, notably in hypothesis testing and in construction of confidence intervals. This distribution is sometimes called the central chi-squared distribution, a special case of the more general noncentral chi-squared distribution. The chi-squared distribution is used in the common chi-squared tests for goodness of fit of an observed distribution to a theoretical one, the independence of two criteria of classification of qualitative data, and in confidence interval estimation for a population standard deviation of a normal distribution from a sample standard deviation. Many other statistical tests also use this distribution, such as Friedman's analysis of variance by ranks. If Z1, ..., Zk are independent, standard normal random variables, then the sum of their squares, is distributed according to the chi-squared distribution with k degrees of freedom. This is usually denoted as The chi-squared distribution has one parameter: a positive integer k that specifies the number of degrees of freedom (the number of random variables being summed, Zi s). The chi-squared distribution is used primarily in hypothesis testing, and to a lesser extent for confidence intervals for population variance when the underlying distribution is normal. Unlike more widely known distributions such as the normal distribution and the exponential distribution, the chi-squared distribution is not as often applied in the direct modeling of natural phenomena.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
MATH-232: Probability and statistics (for IC)
A basic course in probability and statistics
FIN-417: Quantitative risk management
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
Show more
Related lectures (292)
Probability Distributions in Environmental Studies
Explores probability distributions for random variables in air pollution and climate change studies, covering descriptive and inferential statistics.
Interval Estimation: Method of Moments
Covers the method of moments for estimating parameters and constructing confidence intervals based on empirical moments matching distribution moments.
Quantum Random Number Generation
Explores quantum random number generation, discussing the challenges and implementations of generating good randomness using quantum devices.
Show more
Related publications (378)

A story of two transitions: From adhesive to abrasive wear and from ductile to brittle regime

Jean-François Molinari, Sacha Zenon Wattel

Atomistic simulations performed with a family of model potential with tunable hardness have proven to be a great tool for advancing the understanding of wear processes at the asperity level. They have been instrumental in finding a critical length scale, w ...
2024

Fair real-time control of energy storage systems in active distribution networks in the presence of uncertainties

Plouton Grammatikos

The thesis explores the issue of fairness in the real-time (RT) control of battery energy storage systems (BESSs) hosted in active distribution networks (ADNs) in the presence of uncertainties by proposing and experimentally validating appropriate control ...
EPFL2024

Effects of Hyporheic Exchange and Settlement on the Particle Size Distribution of Colloids

David Andrew Barry, Qihao Jiang

Colloid particle size plays an important role in contaminant adsorption and clogging in the hyporheic zone, but it remains unclear how the particle size changes during the transport of colloids. This study investigated the variation of the particle size of ...
New York2024
Show more
Related concepts (51)
Student's t-distribution
In probability and statistics, Student's t-distribution (or simply the t-distribution) is a continuous probability distribution that generalizes the standard normal distribution. Like the latter, it is symmetric around zero and bell-shaped. However, has heavier tails and the amount of probability mass in the tails is controlled by the parameter . For the Student's t distribution becomes the standard Cauchy distribution, whereas for it becomes the standard normal distribution .
Gamma distribution
In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use: With a shape parameter and a scale parameter . With a shape parameter and an inverse scale parameter , called a rate parameter. In each of these forms, both parameters are positive real numbers.
Likelihood-ratio test
In statistics, the likelihood-ratio test assesses the goodness of fit of two competing statistical models, specifically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods. If the constraint (i.e., the null hypothesis) is supported by the observed data, the two likelihoods should not differ by more than sampling error. Thus the likelihood-ratio test tests whether this ratio is significantly different from one, or equivalently whether its natural logarithm is significantly different from zero.
Show more
Related MOOCs (7)
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.