In probability theory and statistics, a cross-covariance matrix is a matrix whose element in the i, j position is the covariance between the i-th element of a random vector and j-th element of another random vector. A random vector is a random variable with multiple dimensions. Each element of the vector is a scalar random variable. Each element has either a finite number of observed empirical values or a finite or infinite number of potential values. The potential values are specified by a theoretical joint probability distribution. Intuitively, the cross-covariance matrix generalizes the notion of covariance to multiple dimensions.
The cross-covariance matrix of two random vectors and is typically denoted by or .
For random vectors and , each containing random elements whose expected value and variance exist, the cross-covariance matrix of and is defined by
where and are vectors containing the expected values of and . The vectors and need not have the same dimension, and either might be a scalar value.
The cross-covariance matrix is the matrix whose entry is the covariance
between the i-th element of and the j-th element of . This gives the following component-wise definition of the cross-covariance matrix.
For example, if and are random vectors, then
is a matrix whose -th entry is .
For the cross-covariance matrix, the following basic properties apply:
If and are independent (or somewhat less restrictedly, if every random variable in is uncorrelated with every random variable in ), then
where , and are random vectors, is a random vector, is a vector, is a vector, and are matrices of constants, and is a matrix of zeroes.
Complex random vector#Cross-covariance matrix and pseudo-cross-covariance matrix
If and are complex random vectors, the definition of the cross-covariance matrix is slightly changed. Transposition is replaced by Hermitian transposition:
For complex random vectors, another matrix called the pseudo-cross-covariance matrix is defined as follows:
Uncorrelatedness (probability theory)
Two random vectors and are called uncorrelated if their cross-covariance matrix matrix is a zero matrix.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Multivariate statistics focusses on inferring the joint distributional properties of several random variables, seen as random vectors, with a main focus on uncovering their underlying dependence struc
In this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
In probability theory and statistics, covariance is a measure of the joint variability of two random variables. If the greater values of one variable mainly correspond with the greater values of the other variable, and the same holds for the lesser values (that is, the variables tend to show similar behavior), the covariance is positive. In the opposite case, when the greater values of one variable mainly correspond to the lesser values of the other, (that is, the variables tend to show opposite behavior), the covariance is negative.
We describe a series of algorithms that efficiently implement Gaussian model-X knockoffs to control the false discovery rate on large-scale feature selection problems. Identifying the knockoff distribution requires solving a large-scale semidefinite progra ...
The state-of-the-art methods for estimating high-dimensional covariance matrices all shrink the eigenvalues of the sample covariance matrix towards a data-insensitive shrinkage target. The underlying shrinkage transformation is either chosen heuristically ...
How can we discern whether the covariance operator of a stochastic pro-cess is of reduced rank, and if so, what its precise rank is? And how can we do so at a given level of confidence? This question is central to a great deal of methods for functional dat ...