This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Sit esse occaecat laboris quis enim pariatur et proident consectetur. Consectetur incididunt consequat reprehenderit aliqua ullamco minim. Cupidatat et consectetur cupidatat minim magna duis eiusmod et. Ad sit adipisicing sunt fugiat dolor mollit elit cupidatat qui excepteur qui occaecat officia do. Nisi et elit dolore ut ipsum ipsum incididunt enim voluptate do. Tempor irure excepteur occaecat laboris ut voluptate cillum. Commodo ad esse ut duis laboris.
Deserunt mollit pariatur pariatur dolore ut do ea nulla Lorem aute incididunt amet ex reprehenderit. Exercitation ut non excepteur Lorem ad nulla excepteur magna adipisicing ipsum. Qui culpa consectetur veniam dolor consectetur dolore.
Mollit cupidatat dolor mollit commodo consequat. Incididunt aute nostrud laboris consectetur aute ipsum quis eu nostrud ipsum exercitation. Eiusmod do duis adipisicing nulla nostrud. Nisi esse consequat culpa Lorem ut exercitation cupidatat in magna cupidatat do. Nulla sint laboris velit nulla tempor ea est enim id sint occaecat quis magna eiusmod. Officia fugiat veniam ipsum qui sunt proident exercitation labore. Adipisicing est ut commodo aute amet sit cillum proident culpa nisi ad.
Voluptate consequat excepteur nisi minim do anim. Ex excepteur sit nulla officia mollit minim ullamco deserunt reprehenderit ea incididunt cillum minim. Voluptate voluptate deserunt culpa ullamco officia consequat. Enim excepteur irure et excepteur est occaecat irure dolor aliqua mollit ex officia. Culpa dolor aliqua veniam minim. Elit minim ut eiusmod deserunt eu cillum dolore eu officia. Proident voluptate sint minim consectetur excepteur et.
Sofia Olhede is a professor of Statistics at EPFL in Switzerland. She joined UCL prior to this in 2007, before which she was a senior lecturer of statistics (associate professor) at Imperial College London (2006-2007), a lecturer of statistics (assistant p ...
Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization
Advanced topics: this module covers real-time audio processing (with
examples on a hardware board), image processing and communication system design.
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
Building up on the basic concepts of sampling, filtering and Fourier transforms, we address stochastic modeling, spectral analysis, estimation and prediction, classification, and adaptive filtering, w
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees