Summary
A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around or lower. The appearance of the red giant is from yellow-white to reddish-orange, including the spectral types K and M, sometimes G, but also class S stars and most carbon stars. Red giants vary in the way by which they generate energy: most common red giants are stars on the red-giant branch (RGB) that are still fusing hydrogen into helium in a shell surrounding an inert helium core red-clump stars in the cool half of the horizontal branch, fusing helium into carbon in their cores via the triple-alpha process asymptotic-giant-branch (AGB) stars with a helium burning shell outside a degenerate carbon–oxygen core, and a hydrogen-burning shell just beyond that. Many of the well-known bright stars are red giants because they are luminous and moderately common. The K0 RGB star Arcturus is 36 light-years away, and Gamma Crucis is the nearest M-class giant at 88 light-years' distance. A red giant will usually produce a planetary nebula and become a white dwarf at the end of its life. A red giant is a star that has exhausted the supply of hydrogen in its core and has begun thermonuclear fusion of hydrogen in a shell surrounding the core. They have radii tens to hundreds of times larger than that of the Sun. However, their outer envelope is lower in temperature, giving them a yellowish-orange hue. Despite the lower energy density of their envelope, red giants are many times more luminous than the Sun because of their great size. Red-giant-branch stars have luminosities up to nearly three thousand times that of the Sun (), spectral types of K or M, have surface temperatures of 3,000–4,000 K, and radii up to about 200 times the Sun (). Stars on the horizontal branch are hotter, with only a small range of luminosities around .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (5)
PHYS-753: Dynamics of astrophysical fluids and plasmas
The dynamics of ordinary matter in the Universe follows the laws of (magneto)hydrodynamics. In this course, the system of equations that describes astrophysical fluids will be discussed on the basis o
PHYS-209: Astrophysics I: introduction to astrophysics
Ce cours décrit de façon simple les processus physiques qui expliquent l'univers dans lequel nous vivons. En couvrant une large gamme de sujets, le but du cours est aussi de donner un aperçu général d
PHYS-643: Astrophysics VI : The variable Universe
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
Show more
Related lectures (32)
Stellar Evolution: Life and Death of StarsMOOC: Introduction to Astrophysics
Explores the birth, life, and death of stars, including fusion processes and white dwarf formation.
Origin of the Nuclides
Explores the origin of radionuclides from supernova explosions and their role in nature, covering topics such as nuclear astrophysics, cosmic element formation, and stellar evolution.
The Cosmic Distance Ladder
Explores the fundamental problem of distance in astronomy and discusses various methods for distance measurement, including wide-angle astrometry and detached eclipsing binary distances.
Show more