In probability theory, a product-form solution is a particularly efficient form of solution for determining some metric of a system with distinct sub-components, where the metric for the collection of components can be written as a product of the metric across the different components. Using capital Pi notation a product-form solution has algebraic form
where B is some constant. Solutions of this form are of interest as they are computationally inexpensive to evaluate for large values of n. Such solutions in queueing networks are important for finding performance metrics in models of multiprogrammed and time-shared computer systems.
The first product-form solutions were found for equilibrium distributions of Markov chains. Trivially, models composed of two or more independent sub-components exhibit a product-form solution by the definition of independence. Initially the term was used in queueing networks where the sub-components would be individual queues. For example, Jackson's theorem gives the joint equilibrium distribution of an open queueing network as the product of the equilibrium distributions of the individual queues. After numerous extensions, chiefly the BCMP network it was thought local balance was a requirement for a product-form solution.
Gelenbe's G-network model was the first to show that this is not the case. Motivated by the need to model biological neurons which have a point-process like spiking behaviour, he introduced the precursor of G-Networks, calling it the random neural network. By introducing "negative customers" which can destroy or eliminate other customers, he generalised the family of product form networks. Then this was further extended in several steps, first by Gelenbe's "triggers" which are customers which have the power of moving other customers from some queue to another. Another new form of customer that also led to product form was Gelenbe's "batch removal".
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In queueing theory, a discipline within the mathematical theory of probability, a G-network (generalized queueing network, often called a Gelenbe network) is an open network of G-queues first introduced by Erol Gelenbe as a model for queueing systems with specific control functions, such as traffic re-routing or traffic destruction, as well as a model for neural networks.
Queueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a service. Queueing theory has its origins in research by Agner Krarup Erlang, who created models to describe the system of incoming calls at the Copenhagen Telephone Exchange Company.
Covers the general solution of homogeneous second-order linear differential equations with constant coefficients and the concept of linear independence of solutions.
This paper addresses the mean-field behavior of large-scale systems of parallel servers with a processor sharing service discipline when arrivals are Poisson and jobs have general service time distributions when an SQ(d) routing policy is used. Under this ...
Matrix equations of the kind A(1)X(2)+A(0)X+A(-1)=X, where both the matrix coefficients and the unknown are semi-infinite matrices belonging to a Banach algebra, are considered. These equations, where coefficients are quasi-Toeplitz matrices, are encounter ...
In this research we study the berth allocation problem (BAP) in real time as disruptions occur. In practice, the actual arrival times and handling times of the vessels deviate from their expected or estimated values, which can disrupt the original berthing ...