Queueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a service. Queueing theory has its origins in research by Agner Krarup Erlang, who created models to describe the system of incoming calls at the Copenhagen Telephone Exchange Company. These ideas have since seen applications in telecommunication, traffic engineering, computing, project management, and particularly industrial engineering, where they are applied in the design of factories, shops, offices, and hospitals. The spelling "queueing" over "queuing" is typically encountered in the academic research field. In fact, one of the flagship journals of the field is Queueing Systems. A queue or queueing node can be thought of as nearly a black box. Jobs (also called customers or requests, depending on the field) arrive to the queue, possibly wait some time, take some time being processed, and then depart from the queue. However, the queueing node is not quite a pure black box since some information is needed about the inside of the queuing node. The queue has one or more servers which can each be paired with an arriving job. When the job is completed and departs, that server will again be free to be paired with another arriving job. An analogy often used is that of the cashier at a supermarket. (There are other models, but this one is commonly encountered in the literature.) Customers arrive, are processed by the cashier, and depart. Each cashier processes one customer at a time, and hence this is a queueing node with only one server. A setting where a customer will leave immediately if the cashier is busy when the customer arrives, is referred to as a queue with no buffer (or no waiting area). A setting with a waiting zone for up to n customers is called a queue with a buffer of size n.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
COM-300: Stochastic models in communication
L'objectif de ce cours est la maitrise des outils des processus stochastiques utiles pour un ingénieur travaillant dans les domaines des systèmes de communication, de la science des données et de l'i
MATH-332: Markov chains
The course follows the text of Norris and the polycopie (which will be distributed chapter by chapter).
MGT-484: Applied probability & stochastic processes
This course focuses on dynamic models of random phenomena, and in particular, the most popular classes of such models: Markov chains and Markov decision processes. We will also study applications in q
Related lectures (34)
Little's Law: Understanding System Performance
Explores Little's Law, a key concept in system analysis and queuing theory.
Arrival and Departure Processes
Covers arrival and departure processes, Poisson distributions, service times, and system performance evaluation.
Stochastic Models for Communications: Markov Chains and Random Variables
Covers Markov chains, random variables, independence, characteristic functions, and queueing theory.
Show more
Related publications (67)

The Strong Integral Input-to-State Stability Property in Dynamical Flow Networks

Nils Gustav Nilsson

Dynamical flow networks serve as macroscopic models for, e.g., transportation networks, queuing networks, and distribution networks. While the flow dynamics in such networks follow the conservation of mass on the links, the outflow from each link is often ...
Piscataway2024

Efficient Max-Pressure Traffic Management for Large-Scale Congested Urban Networks

Nikolaos Geroliminis, Dimitrios Tsitsokas, Anastasios Kouvelas

Traffic responsive signal control systems bear high potential in reducing delays in congested networks due to their ability of dynamically adjusting right-of-way assignment among conflicting movements, based on real-time traffic measurements. In this work, ...
2022

Interleaved Weighted Round-Robin: A Network Calculus Analysis

Jean-Yves Le Boudec, Seyed Mohammadhossein Tabatabaee

Weighted Round-Robin (WRR) is often used, due to its simplicity, for scheduling packets or tasks. With WRR, a number of packets equal to the weight allocated to a flow can be served consecutively, which leads to a bursty service. Interleaved Weighted Round ...
IEICE-INST ELECTRONICS INFORMATION COMMUNICATION ENGINEERS2021
Show more
Related concepts (16)
Poisson point process
In probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one another. The Poisson point process is often called simply the Poisson process, but it is also called a Poisson random measure, Poisson random point field or Poisson point field.
Poisson distribution
In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson ('pwɑːsɒn; pwasɔ̃). The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area, or volume.
Markov chain
A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, "What happens next depends only on the state of affairs now." A countably infinite sequence, in which the chain moves state at discrete time steps, gives a discrete-time Markov chain (DTMC). A continuous-time process is called a continuous-time Markov chain (CTMC).
Show more
Related MOOCs (10)
Introduction to Discrete Choice Models
The course introduces the theoretical foundations to choice modeling and describes the steps of operational modeling.
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.