Concept

Kronecker Jugendtraum

Le théorème de Kronecker-Weber, d'abord annoncé par Kronecker, dont la démonstration fut complétée par Weber et Hilbert, décrit les extensions abéliennes finies du corps des rationnels. Celles-ci sont contenues dans les extensions cyclotomiques, c'est-à-dire les extensions engendrées par les racines de l'unité. Du point de vue de l'analyse complexe, on construit les racines de l'unité comme valeurs spéciales de la fonction exponentielle. Pour ce qui est de décrire les extensions abéliennes d'un corps de nombres général, la théorie des corps de classes apporte la généralisation du volet algébrique de la situation précédente : les extensions abéliennes sont classifiées par leur groupe de normes, qui décrit les sous-groupes d'indice fini du groupe multiplicatif du corps de nombres étudié. Le Kronecker Jugendtraum, littéralement le rêve de jeunesse de Kronecker, et connu également comme le douzième problème de Hilbert, suggère que les extensions abéliennes d'un corps de nombres doivent être contenues dans des extensions engendrées par des valeurs spéciales de fonctions analytiques. La théorie de la multiplication complexe répond à cette question pour un corps de nombres K qui est extension quadratique imaginaire du corps des nombres rationnels : Le corps de classes de Hilbert de K est engendré par les invariants j de certaines courbes elliptiques à multiplication complexe par le corps K (celles dont l'anneau d'endomorphismes est l'anneau des entiers algébriques de K). Ce sont des valeurs spéciales de la fonction modulaire j aux points du demi-plan de Poincaré qui sont situés dans K. Les extensions abéliennes plus générales sont engendrées sur le corps de classes par les coordonnées des points de torsion d'une courbe du type précédent : ce sont les valeurs prises par les fonctions rationnelles sur cette courbe elliptique.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.