was a Japanese mathematician and Michael Henry Strater Professor Emeritus of Mathematics at Princeton University who worked in number theory, automorphic forms, and arithmetic geometry. He was known for developing the theory of complex multiplication of abelian varieties and Shimura varieties, as well as posing the Taniyama–Shimura conjecture which ultimately led to the proof of Fermat's Last Theorem.
Gorō Shimura was born in Hamamatsu, Japan, on 23 February 1930. Shimura graduated with a B.A. in mathematics and a D.Sc. in mathematics from the University of Tokyo in 1952 and 1958, respectively.
After graduating, Shimura became a lecturer at the University of Tokyo, then worked abroad — including ten months in Paris and a seven-month stint at Princeton's Institute for Advanced Study — before returning to Tokyo, where he married Chikako Ishiguro. He then moved from Tokyo to join the faculty of Osaka University, but growing unhappy with his funding situation, he decided to seek employment in the United States. Through André Weil he obtained a position at Princeton University. Shimura joined the Princeton faculty in 1964 and retired in 1999, during which time he advised over 28 doctoral students and received the Guggenheim Fellowship in 1970, the Cole Prize for number theory in 1977, the Asahi Prize in 1991, and the Steele Prize for lifetime achievement in 1996.
Shimura described his approach to mathematics as "phenomenological": his interest was in finding new types of interesting behavior in the theory of automorphic forms. He also argued for a "romantic" approach, something he found lacking in the younger generation of mathematicians. Shimura used a two-part process for research, using one desk in his home dedicated to working on new research in the mornings and a second desk for perfecting papers in the afternoon.
Shimura had two children, Tomoko and Haru, with his wife Chikako. Shimura died on 3 May 2019 in Princeton, New Jersey at the age of 89.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is a modern exposition of "Duke's Theorems" which describe the distribution of representations of large integers by a fixed ternary quadratic form. It will be the occasion to introduce the
En mathématiques, et plus précisément en théorie des nombres, le dernier théorème de Fermat, ou grand théorème de Fermat, ou depuis sa démonstration théorème de Fermat-Wiles, s'énonce comme suit : Énoncé par Pierre de Fermat d'une manière similaire dans une note marginale de son exemplaire d'un livre de Diophante, il a cependant attendu plus de trois siècles une preuve publiée et validée, établie par le mathématicien britannique Andrew Wiles en 1994.
Robert Langlands, né le en Colombie-Britannique au Canada, est un des mathématiciens majeurs du . Il introduit des idées nouvelles et profondes en théorie des nombres et en théorie des représentations. Robert Langlands soutient son doctorat à l'université Yale en 1960. Pendant les années 1960, il développe la théorie des séries d'Eisenstein introduite par Atle Selberg. Ses travaux qui suivent ont un grand impact mathématique. De 1967 à 1972, il travaille à l'Université Yale.
En mathématiques, une courbe elliptique est à multiplication complexe si l'anneau de ses endomorphismes est plus grand que celui des entiers (il existe une théorie plus générale de la multiplication complexe pour les variétés abéliennes de dimension supérieure). Cette notion est liée au douzième problème de Hilbert. Un exemple de courbe elliptique avec multiplication complexe est C/Z[i]θ où Z[i] est l'anneau des entiers de Gauss, et θ est n'importe quel nombre complexe différent de zéro.
We derive a Motohashi-type formula for the cubic moment of central values of -functions of level cusp forms twisted by quadratic characters of conductor , previously studied by Conrey and Iwaniec and Young. Corollaries of this formula include Weyl-subconve ...
We construct "generalized Heegner cycles" on a variety fibered over a Shimura curve, defined over a number field. We show that their images under the p-adic Abel-Jacobi map coincide with the values (outside the range of interpolation) of a p-adic L-functio ...
We define and study in terms of integral IwahoriâHecke algebras a new class of geometric operators acting on the Bruhat-Tits building of connected reductive groups over p-adic fields. These operators, which we call U-operators, generalize the geometric n ...