Summary
[[File:Set of curves Outer approximation.png|345px|thumb|right|Tolerance function (turquoise) and interval-valued approximation (red)]] Interval arithmetic (also known as interval mathematics; interval analysis or interval computation) is a mathematical technique used to mitigate rounding and measurement errors in mathematical computation by computing function bounds. Numerical methods involving interval arithmetic can guarantee relatively reliable and mathematically correct results. Instead of representing a value as a single number, interval arithmetic or interval mathematics represents each value as a range of possibilities. Mathematically, instead of working with an uncertain real-valued variable , interval arithmetic works with an interval that defines the range of values that can have. In other words, any value of the variable lies in the closed interval between and . A function , when applied to , produces an interval which includes all the possible values for for all . Interval arithmetic is suitable for a variety of purposes; the most common use is in scientific works, particularly when the calculations are handled by software, where it is used to keep track of rounding errors in calculations and of uncertainties in the knowledge of the exact values of physical and technical parameters. The latter often arise from measurement errors and tolerances for components or due to limits on computational accuracy. Interval arithmetic also helps find guaranteed solutions to equations (such as differential equations) and optimization problems. The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset. This treatment is typically limited to real intervals, so quantities in the form where and are allowed.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (1)

EVA: An Encrypted Vector Arithmetic Language and Compiler for Efficient Homomorphic Computation

Blagovesta Hristova Kostova, Wei Dai

Fully-Homomorphic Encryption (FHE) offers powerful capabilities by enabling secure offloading of both storage and computation, and recent innovations in schemes and implementations have made it all the more attractive. At the same time, FHE is notoriously hard to use with a very constrained programming model, a very unusual performance profile, and many cryptographic constraints. Existing compilers for FHE either target simpler but less efficient FHE schemes or only support specific domains where they can rely on expert-provided high-level runtimes to hide complications. This paper presents a new FHE language called Encrypted Vector Arithmetic (EVA), which includes an optimizing compiler that generates correct and secure FHE programs, while hiding all the complexities of the target FHE scheme. Bolstered by our optimizing compiler, programmers can develop efficient general-purpose FHE applications directly in EVA. For example, we have developed image processing applications using EVA, with a very few lines of code. EVA is designed to also work as an intermediate representation that can be a target for compiling higher-level domain-specific languages. To demonstrate this, we have re-targeted CHET, an existing domain-specific compiler for neural network inference, onto EVA. Due to the novel optimizations in EVA, its programs are on average 5.3x faster than those generated by CHET. We believe that EVA would enable a wider adoption of FHE by making it easier to develop FHE applications and domain-specific FHE compilers.
ASSOC COMPUTING MACHINERY2020
Related concepts (17)
Propagation of uncertainty
In statistics, propagation of uncertainty (or propagation of error) is the effect of variables' uncertainties (or errors, more specifically random errors) on the uncertainty of a function based on them. When the variables are the values of experimental measurements they have uncertainties due to measurement limitations (e.g., instrument precision) which propagate due to the combination of variables in the function. The uncertainty u can be expressed in a number of ways. It may be defined by the absolute error Δx.
Set inversion
In mathematics, set inversion is the problem of characterizing the X of a set Y by a function f, i.e., X = f  −1(Y ) = {x ∈ Rn | f(x) ∈ Y }. It can also be viewed as the problem of describing the solution set of the quantified constraint "Y(f (x))", where Y( y) is a constraint, e.g. an inequality, describing the set Y. In most applications, f is a function from Rn to Rp and the set Y is a box of Rp (i.e. a Cartesian product of p intervals of R).
Interval arithmetic
[[File:Set of curves Outer approximation.png|345px|thumb|right|Tolerance function (turquoise) and interval-valued approximation (red)]] Interval arithmetic (also known as interval mathematics; interval analysis or interval computation) is a mathematical technique used to mitigate rounding and measurement errors in mathematical computation by computing function bounds. Numerical methods involving interval arithmetic can guarantee relatively reliable and mathematically correct results.
Show more
Related courses (9)
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-251(c): Numerical analysis
Le cours présente des méthodes numériques pour la résolution de problèmes mathématiques comme des systèmes d'équations linéaires ou non linéaires, approximation de fonctions, intégration et dérivation
MATH-459: Numerical methods for conservation laws
Introduction to the development, analysis, and application of computational methods for solving conservation laws with an emphasis on finite volume, limiter based schemes, high-order essentially non-o
Show more